Методы наведения управляемых авиационных средств поражения. Способ управления ракетой Пассивные системы наведения

Запуск современной ракеты по стоимости складывается из двух примерно равных частей: 50 % приходится на стоимость самой ракеты и 50% - на стоимость ее системы управления. Конечно, такое соотношение сложилось не сразу. На заре ракетной техники системы управления были примитивными и их стоимость по сравнению со стоимостью ракеты была ничтожной. Но постепенно, в виду возрастания требований к системе управления, ее сложность начала возрастать, а стоимость - резко увеличиваться, в то время как стоимость ракеты росла весьма медленно.

Почему же возросла сложность системы управления? Да потому, что ракеты - это беспилотные летательные аппараты и пришлось автоматизировать постепенно все функции, которые должен выполнять человек, как в процессе полета, так и в процессе предстартовой подготовки аппарата.

Первое, что надо было создать - это автопилот. Ведь на самолетах сначала его не было. Летчик управлял аэропланом с помощью механических устройств: педалей, ручек, тросов и т.п. На ракете же сразу пришлось делать автопилот как автомат управления угловым движением. Сначала он управлял ракетой как твердым телом, а теперь - с учетом всех дополнительных степеней свободы - упругих колебаний корпуса, колебаний жидкости в баках и т. п.

Контур наведения (система управления движением центра масс ракеты) на первых парах тоже была примитивной. Так, на ракете ФАУ-2 задавалась программа ее разворота по углу тангажа в плоскости стрельбы, а в нужный момент, когда по показателям электролитического интегратора предельного ускорения достигалась скорость, соответствующая заданной дальности стрельбы, производилась отсечка тяги двигателя. Это были 40 - 50-е годы ХХ века.

Затем начали усложнять контур наведения. К сигналам рассогласования в параметрах вращательного движения по углам тангажа и рыскания стали добавлять отклонения по кажущимся скоростям и координатам в направлениях нормали и бинормали к расчетной траектории, то есть стали стабилизировать также и движение центра масс ракеты в этих направлениях. Кроме того, стали регулировать движение центра масс и в направлении касательной к расчетной траектории. Для этого в систему управления вводили программу изменения продольной кажущейся скорости, сравнивали ее с интегралом от показаний акселерометра, измерительная ось которого была параллельна продольной оси ракеты, а полученное рассогласование подавали в регулятор расхода топлива, который изменял величину тяги (а вместе с ней и продольного ускорения) в нужную сторону. Подобные системы можно назвать системами "жесткого" управления, ибо они "жестко" вели центр масс ракеты по расчётной траектории на всем активном участке полета. Они были реализованы в 50 - 60-х годах ХХ века.

Однако не на всех ракетах можно было применять такие контуры наведения. Например, тяга твердотопливных ракет не поддается регулированию, а разброс ее бывает значительный. Поэтому в повестку дня стала задача создания такой системы управления, которая позволяла бы центру масс двигаться по семейству "гибких" в пространстве скоростей и координат траекторий. Такая система была бы пригодной и для жидкостных ракет с многокамерной (многосопловой) двигательной установкой в тех случаях, когда часть камер на активном участке аварийно выключалась, а управляемость ракеты сохранялась. И такие системы в 60 - 70-х годах были созданы. Их назвали системами терминального управления , использовав имя Terminus - древнеримского божества, ответственного за охрану границ Римской империи. Человечество часто использует этот латинский корень для обозначения чего-либо, связанного с границей, краем, концом и т. п. (например: терминатор - граница света и тени; терминал - оконечный пункт путей сообщения или линии связи и т. д.). В системах же управления ракет этот термин был использован потому, что в указанных системах производилось управление не текущими параметрами движения, а конченными, граничными, которые характеризует точку траектории, в которой заданы подлежащие регулированию параметры. Примером таких параметров могут быть: дальность полета и боковое отклонение от цели (для баллистических ракет); высота орбиты назначения; радиальная скорость в точке выхода на орбиту, наклонение плоскости орбиты к экватору (для космических ракет) и т. п. Для управления конечными параметрами за ними надо "наблюдать", то есть как-либо производить их счисление. Его принято называть "прогнозом". Методы прогноза применяют разные: от прямого вычисления указанных параметров путем численного интегрирования в бортовой машине уравнений движения центра масс ракеты в "ускоренном" масштабе времени до неявного вычисления рассогласований по конечным параметрам с использованием специальных линейных операторов. После того, как рассогласования по конечным параметрам определены, вырабатывается программа коррекции управления движением, которая в общем случае распределяет во времени управляющее воздействие на остающемся участке активного полёта по определенному закону.

Однажды, в конце 80-х годов ракета-носитель "Зенит" , на второй ступени начала "барахлить": аварийно выключился маршевый двигатель, а рулевые двигатели остались в строю. Питание топливом у тех и других двигателей идет из одних и тех же баков; управляемость ракеты в канале автопилота сохранилась. Если бы на ракете "Зенит" была старая система с жестким регулированием продольной кажущейся скорости, то через некоторое время после отключения маршевого двигателя рассогласование по скорости в продольном канале достигло бы предельно допустимой в этой системе величины (несколько десятков м/с), после чего было бы произведено аварийное автоматическое прекращение полета. Система терминального управления ракеты "Зенит" поступила совершенно иначе. Она поняла, что тяга упала, спрогнозировала при пониженной тяге оставшуюся до выхода на орбиту часть активного участка траектории, вычислила полученные рассогласования по параметрам целевой орбиты и выработала поправку к программе тангажа (в сторону кабрирования) с целью парировать действие гравитационного ускорения. В сущности, эта система действовала как интеллектуальная, обладающая определенными знаниями в области теории реактивного движения. Действительно, из формулы Циолковского известно, что конечная скорость (в данной задаче круговая для целевой орбиты) не зависит от секундного расхода топлива (т.е. от того, что часть двигателей выключалась), а зависит от его запаса (а он сохранился послу этого выключения). Правда, формула Циолковского справедлива для полета в безвоздушном пространстве при отсутствии тяготения по прямой. Два из этих условий в рассматриваемой аварийной ситуации выполнялись, а вот для парирования тяготения как раз и понадобилось подправить программу тангажа. В результате "Зенит" дотянул до заданной орбиты, набрал нужную круговую скорость, и спутник был успешно запущен. Это был триумф "гибкой" системы терминального управления.

Еще одной проблемой автоматизации системы управления было создание автоштурмана на ракете, т. е. такого автомата, который позволял бы определять координаты текущего местоположения ракеты, компоненты ее текущей скорости, ориентацию корпуса ракеты в пространстве, его угловую скорость и полетное время.

На первых ракетах автоштурман был примитивный; он позволял определять не абсолютные, а кажущиеся параметры: кажущийся путь, кажущуюся скорость (без учета действия гравитации). При этом использовались гирогоризонты и гировертиканты, на которых устанавливались акселерометры, чьи показания интегрировались в аналоговых устройствах. Прицеливали на старте ракету в азимуте путем ее разворота на поворотном столе для обеспечения выставки органов управления в плоскость стрельбы. Так, в частности, прицеливалась королевская ракета Р-7 , нацеленная на США.

Однако управление по кажущимся параметрам имело методическую ошибку из-за неучета гравитационных ускорений, а также значительные инструментальные ошибки приборов (акселерометров, гироскопов).

Поэтому автономная инерциальная часть системы управления дополнялась радиотехнической системой внешней коррекции траектории активного участка. Радиотехническая система была весьма громоздкой, содержала несколько наземных пунктов управления и в военном отношении была очень уязвимой. Разработчик автономной подсистемы Н.А. Пилюгин стал, в сущности, соревноваться с разработчиком радиотехнической подсистемы Михаилом Сергеевичем Рязанским (впоследствии членом-корреспондентом Академии Наук СССР) в части обеспечения точности.

Активные радионавигационные системы наведения используют метод локации, используется диапазон миллиметровых волн. Иногда используют диапазон сантиметровых волн. По данной схеме строятся ракеты воздух-воздух большой дальности

Система наведения подобного типа ракет комбинированная: программная гироинерциальная + активная инерционная. Сам процесс наведения состоит из этапов:

1)Полет от момента пуска, до рубежа самонаведения (под действием программной системы)

2)От рубежа самонаведения до момента поражения цели.

Главной проблемой такого рода систем наведения является высокая сложность селекции цели на удалении от носителя

Решает эту проблему полуактивный целеуказатель по доплеровскому сдвигу.

Специальным информационным каналом целеуказания с носителя, самолета целеуказания.

Недостатки:

Долгосканирующие действие радиолокационного излучения

Низкая помехоустройчивость против применения организованных помех

Достоинства:

Любая дальность действия до рубежа самонаведения

Возможность повышения помехоустойчивости путем изменения режима работы системы наведения

Возможность наведения на постановщик помех

В связи с ограниченными возможностями ракет большой дальности, для увеличения поражений целей используется методы группового наведения.

Групповое наведение сокращает скрытность группы до конца. Кроме того активные системы наведения используются в ракетах ближнего воздушного боя – это специальный подвид ракет малой дальности рассчитанный на поражение высокоманевренных целей в ближнем бою.

Летательный аппарат противника поражается в верхней или нижней полусфере на дальности 0-2500 метров

Представляет собой время жизни ракеты 1 и доли секунды.

Особенностью применения является то, что ракета должна выполнить программируемый разворот в сторону цели. Обнаружить и селектировать цель и выполнить наведение на нее.

Достоинства:

Возможность измерения дальности до цели

Недостатки:

Невозможность целеуказания на расстоянии от носителя

Полуактивные радиолокационные системы (ПАРЛ ГСР или РГС)

Использую метод локации, но в качестве источника облучения используется РЛС самолета носителя.

Применяется в ракетах воздух-воздух средней дальности.

Аналогично предыдущим ракетам должны иметь нестабилизированную систему наведения до рубежа самонаведения.

Используется сантиметровый диапазон, совместимый с РЛС носителя.

Целеуказание в этих системах осуществляется с помощью доплеровского сдвига.

В процессе полета после пуска ракета имеет две антенны. Одна гиростабилизированная направленная вперед и принимающая отраженный сигнал от цели, вторая направлена назад и принимает сигнал РЛС, в процессе сближения РЛС изменят сигнал так, чтобы доплеровский сдвиг был постоянен.

Достоинства:

Большая дальность рубежа самонаведения в силу большей мощности и больших размеров.

Простота процесса целеуказания по доплеровскому сдвигу

Более высокая помехоустойчивость

Недостатки:

Ограничение на маневр носителя после пуска

Падение точности с увеличением расстояния от носителя

Пассивные радиотехнические системы наведения (ПРГСН или ПРР)

Представляет собой координаторы оснащенные приемниками соответственного диапазона, в котором работают системы противника.

Приемники бывают

1)импульсные – на поражение РЛС

2)универсальные – не только по РЛС

Для повышения помехоустойчивости ракеты должны иметь гироскопическую систему стабилизации траектории полета, что бы при выключенным РЛС сохранялась траектория полета в сторону цели. Так же противорадиолокационные ракеты имеют память параметров сигнала, что бы наводится на выбранную РЛС.

Они наводятся только на источник радиоизлучения, соответственно требуется, чтобы носитель вошел в зону обнаружения РЛС, что опасно, поэтому современные ПРР имеют два режима:

1)Захват до пуска «под крылом» в этом случае обеспечивается захват цели до момента пуска с селекцией аппаратуры носителя.

Достоинства:

Большая точность и помехоустойчивость

Недостатки:

Требуется вход в зону обнаружения РЛС

2)Захват цели после пуска «в полете» обеспечивается аппаратурой в ракете по предварительным данным, занесенным в нее до пуска.

Содержание статьи

РАКЕТНОЕ ОРУЖИЕ, управляемые реактивные снаряды и ракеты – беспилотные средства вооружения, траектории движения которых от стартовой точки до поражаемой цели реализуются с использованием ракетных или реактивных двигателей и средств наведения. Ракеты обычно имеют новейшее электронное оборудование, а при изготовлении их используются наиболее совершенные технологии.

Историческая справка.

Уже в 14 в. ракеты использовались в Китае в военных целях. Однако только в 1920–1930-х годах появились технологии, позволяющие оборудовать ракету приборами и средствами управления, способными провести ее от стартовой точки до цели. Сделать это позволили прежде всего гироскопы и электронное оборудование.

Версальский договор, которым завершилась Первая мировая война , лишил Германию наиболее важных видов оружия и запретил ей перевооружение. Однако в этом договоре не были упомянуты ракеты, поскольку разработка их считалась неперспективной. В результате германское военное ведомство проявило интерес к ракетам и управляемым реактивным снарядам, что открыло новую эру в области вооружений. В конечном счете оказалось, что нацистская Германия разрабатывала 138 проектов управляемых снарядов различных типов. Наиболее известными из них являются два вида «оружия возмездия»: крылатая ракета Фау-1 и баллистическая ракета с инерциальной системой наведения Фау-2. Они нанесли тяжелый урон Великобритании и силам союзников в годы Второй мировой войны.

ТЕХНИЧЕСКИЕ ОСОБЕННОСТИ

Существует множество различных типов боевых ракет, однако для любого из них характерно использование новейших технологий в области управления и наведения, двигателей, боеголовок, создания электронных помех и пр.

Наведение.

Если ракета запущена и не теряет в полете устойчивости, необходимо еще вывести ее на цель. Разработаны различные типы систем наведения.

Инерциальное наведение.

Для первых баллистических ракет считалось приемлемым, если инерциальная система выводила ракету в точку, располагающуюся в нескольких километрах от цели: при полезном грузе в виде ядерного заряда уничтожение цели в этом случае вполне возможно. Однако это заставило обе стороны дополнительно защитить наиболее важные объекты, располагая их в укрытиях или бетонных шахтах. В свою очередь конструкторы ракет усовершенствовали инерциальные системы наведения, обеспечив корректировку траектории ракеты средствами астронавигации и отслеживания земного горизонта. Существенную роль сыграли и достижения в гироскопии. К 1980-м годам погрешность наведения межконтинентальных баллистических ракет составляла менее 1 км.

Самонаведение.

Для большинства ракет, несущих обычные взрывчатые вещества, необходима та или иная система самонаведения. При активном самонаведении ракета снабжается собственным радиолокатором и электронным оборудованием, которое ведет ее до встречи с целью.

При полуактивном самонаведении цель облучается радиолокатором, расположенным на стартовой площадке или вблизи нее. Ракета наводится по сигналу, отраженному от цели. Полуактивное самонаведение сохраняет на стартовой площадке много дорогостоящего оборудования, однако дает оператору возможность контроля за выбором цели.

Лазерные целеуказатели, которые стали использоваться с начала 1970-х годов, во вьетнамской войне доказали свою высокую эффективность: они уменьшили время, в течение которого летный экипаж остается доступным вражескому огню, и количество ракет, необходимых для поражения цели. Система наведения такой ракеты фактически не воспринимает какого-либо излучения, кроме испускаемого лазером. Поскольку рассеяние лазерного луча невелико, он может облучать область, не превышающую габаритов цели.

Пассивное самонаведение сводится к обнаружению излучения, которое испускается или отражается целью, с последующим вычислением курса, выводящего ракету на цель. Это могут быть радиолокационные сигналы, излучаемые системами ПВО противника, свет и тепловое излучение двигателей самолета или другого объекта.

Связь по проводам и оптоволоконная связь.

Используемая обычно методика управления основывается на проводной или оптоволоконной связи ракеты с пусковой платформой. Такая связь снижает стоимость ракеты, поскольку наиболее дорогостоящие компоненты остаются в пусковом комплексе и могут использоваться многократно. В ракете сохраняется лишь небольшой управляющий блок, который необходим для обеспечения устойчивости начального движения ракеты, стартующей с пускового устройства.

Двигатели.

Движение боевых ракет обеспечивается, как правило, ракетными двигателями твердого топлива(РДТТ); в некоторых ракетах используется жидкое топливо, а для крылатых ракет предпочтительны реактивные двигатели. Ракетный двигатель автономен, и его работа не связана с поступлением воздуха извне (как работа поршневых или реактивных двигателей). Горючее и окислитель твердого топлива измельчены до порошкообразного состояния и смешаны с жидким связующим. Смесь заливается в корпус двигателя и отверждается. После этого не нужно никаких приготовлений для приведения двигателя в действие в боевых условиях. Хотя большинство тактических управляемых ракет действует в атмосфере, они снабжаются ракетными, а не реактивными двигателями, так как твердотопливные ракетные двигатели быстрее подготавливаются к пуску, почти не имеют движущихся частей и энергетически более эффективны. Реактивные двигатели используются в управляемых снарядах с длительным временем активного полета, когда использование атмосферного воздуха дает существенный выигрыш. Жидкостные ракетные двигатели (ЖРД) широко использовались в 1950–1960-х годах.

Совершенствование технологии изготовления твердого топлива позволило приступить к производству РДТТ с контролируемыми характеристиками горения, исключающими образование трещин в заряде, которые могли бы привести к аварии. Ракетные двигатели, особенно твердотопливные, стареют по мере того, как входящие в них вещества постепенно вступают в химические связи и изменяют состав, поэтому следует периодически проводить контрольные огневые испытания. Если не подтверждается принятый срок годности какого-либо из испытываемых образцов, заменяется вся партия.

Боеголовка.

При использовании осколочных боеголовок в момент взрыва на цель направляются металлические осколки (обычно тысячи стальных или вольфрамовых кубиков). Такая шрапнель наиболее эффективна при поражении самолетов, средств связи, радиолокаторов ПВО и людей, находящихся вне укрытия. Боеголовка приводится в действие взрывателем, который детонирует при поражении цели или на некотором расстоянии от нее. В последнем случае, при так называемом неконтактном инициировании, срабатывание взрывателя происходит, когда сигнал от цели (отраженный радиолокационный луч, тепловое излучение либо сигнал от небольших бортовых лазеров или светочувствительных датчиков) достигает некоторого порога.

Для поражения танков и бронемашин, укрывающих солдат, применяются кумулятивные заряды, обеспечивающие самоорганизующееся формирование направленного движения осколков боеголовки.

Достижения в области систем наведения позволили конструкторам создать кинетическое оружие – ракеты, поражающее действие которых определяется чрезвычайно большой скоростью движения, которая при ударе приводит к выделению огромной кинетической энергии. Такие ракеты обычно используются для противоракетной обороны.

Электронные помехи.

Применение боевых ракет тесно связано с созданием электронных помех и средств борьбы с ними. Целью таких помех является создание сигналов или шума, которые «обманут» ракету и заставят ее следовать за ложной целью. Ранние способы создания электронных помех сводились к выбросу ленточек алюминиевой фольги. На экранах локаторов присутствие ленточек превращается в визуальное отображение шума. Современные системы создания электронных помех анализируют принятые радиолокационные сигналы и передают ложные, чтобы ввести противника в заблуждение, или просто генерируют радиочастотные помехи, достаточные для того, чтобы заглушить систему противника. Важной частью военной электроники стали компьютеры. Неэлектронные помехи включают в себя создание вспышек, т.е. ложных целей для ракет противника с тепловым наведением, а также специально спроектированных реактивных турбин, смешивающих атмосферный воздух с выхлопными газами для снижения инфракрасной «заметности» самолета.

Системы борьбы с электронными помехами используют такие приемы, как изменение рабочих частот и применение поляризованных электромагнитных волн.

Заблаговременные сборка и испытание.

Требование минимального обслуживания и высокой боеготовности ракетного оружия привели к разработке т.н. «сертифицированных» ракет. Собранные и проверенные ракеты герметизируются на заводе в контейнере и после этого поступают на склад, где они хранятся, пока не будут затребованы воинскими частями. При этом становится излишней сборка в полевых условиях (практиковавшаяся для первых ракет), а электронное оборудование не требует проверок и устранения неисправностей.

ТИПЫ БОЕВЫХ РАКЕТ

Баллистические ракеты.

Баллистические ракеты предназначаются для транспортировки термоядерных зарядов к цели. Их можно классифицировать следующим образом: 1) межконтинентальные баллистические ракеты (МБР) с дальностью полета 5600–24 000 км, 2) ракеты промежуточной дальности (выше средней) – 2400–5600 км, 3) «морские» баллистические ракеты (с дальностью 1400–9200 км), запускаемые с подводных лодок, 4) ракеты средней дальности (800–2400 км). Межконтинентальные и морские ракеты в совокупности со стратегическими бомбардировщиками образуют т.н. «ядерную триаду».

Баллистическая ракета затрачивает лишь считанные минуты на перемещение своей боеголовки по параболической траектории, заканчивающейся на цели. Большая часть времени движения боеголовки затрачивается на полет и спуск в космическом пространстве. Тяжелые баллистические ракеты обычно несут несколько боеголовок индивидуального наведения, направляемых на одну и ту же цель или имеющих «свои» цели (как правило, в радиусе нескольких сотен километров от основной мишени). Для обеспечения нужных аэродинамических характеристик при входе в атмосферу боеголовке придается линзообразная или коническая форма. Аппарат снабжен теплозащитным покрытием, которое сублимирует, переходя из твердого состояния сразу в газообразное, и тем самым обеспечивает унос тепла аэродинамического нагрева. Боеголовка снабжается небольшой собственной навигационной системой для компенсации неизбежных траекторных отклонений, которые могут изменить точку встречи.

Фау-2.

Первый успешный полет Фау-2 состоялся в октябре 1942. Всего было изготовлено более 5700 таких ракет. Успешно стартовали 85% из них, но лишь 20% поразили цель, остальные же взорвались при подлете. 1259 ракет поразили Лондон и его окрестности. Однако наиболее пострадал бельгийский порт Антверпен.

Баллистические ракеты с дальностью выше средней.

В рамках крупномасштабной программы исследований с использованием германских ракетных специалистов и ракет Фау-2, захваченных при разгроме Германии, армейские специалисты США спроектировали и испытали ракеты «Корпорал» с малым и «Редстоун» со средним радиусом действия. На смену ракете «Корпорал» вскоре пришел твердотопливный «Сарджент», а место «Редстоуна» занял «Юпитер» – более крупная ракета на жидком топливе с дальностью выше средней.

МБР.

Разработка МБР в США началась в 1947. «Атлас», первая МБР США, поступила на вооружение в 1960.

Советский Союз примерно в это же время приступил к разработке более крупных ракет. Его «Сэпвуд» (SS-6), первая в мире межконтинентальная ракета, стала реальностью после запуска первого спутника (1957).

Ракеты США «Атлас» и «Титан-1» (последняя принята на вооружение в 1962), как и советская SS-6, использовали криогенное жидкое топливо, и поэтому время их подготовки к старту измерялось часами. «Атлас» и «Титан-1» первоначально размещались в ангарах повышенной прочности и лишь перед пуском приводились в боевое состояние. Однако спустя некоторое время появилась ракета «Титан-2», размещавшаяся в бетонированной шахте и имевшая подземный центр управления. «Титан-2» работал на самовоспламеняющемся жидком топливе длительного хранения. В 1962 вступил в строй «Минитмен», трехступенчатая МБР на твердом топливе, доставляющая единственный заряд мощностью в 1 Мт к цели, удаленной на расстояние 13 000 км.


Владельцы патента RU 2400690:

Изобретение относится к оборонной технике. Технический результат - повышение вероятности попадания ракеты в маневрирующую цель. Система наведения противосамолетных ракет сравнивает сигналы оптической и инфракрасной цифровых фотокамер и сигнала радиолокационной станции и по результирующему сигналу отличает истинные цели от ложных. Система формирует траекторию упреждения путем обратной связи рулей с подвижной головкой самонаведения - головка поворачивается в сторону, противоположную отклонению рулей до тех пор, пока рули не встанут в нейтральное положение. Система может производить опережающее упреждение на фюзеляж путем смещения нейтрали датчика положения рулей в ту же сторону, что и отклонение головки, или дополнительного смещения головки в ту же сторону. 2 н. и 2 з.п. ф-лы, 3 ил.

Изобретение относится к ракетам классов «воздух-воздух» и «земля-воздух» со всеми типами головок самонаведения (далее ГСН).

Известны ракеты с тепловыми ГСН (см. «История авиационного вооружения», Минск, 1999, стр.444), содержащие фюзеляж, двигатель, инфракрасный или радиолокационный датчик цели, усилители и приводы рулей, но они могут быть уведены от цели тепловыми ловушками или солнцем. Известны ракеты с коррекцией траектории по скорости прецессии гироскопов (см. там же, стр.417), но эта система сложна и недостаточно точна, что при энергичном маневре самолета-цели может привести к промаху.

Задача изобретения - повышение вероятности попадания ракеты в маневрирующую цель на фоне помех. Эта задача решается совместно двумя путями. Во-первых, осуществлением электронной дискриминации ложных инфракрасных целей. И во-вторых, более точным наведением ракеты по пересекающейся траектории, а еще лучше - по слегка опережающей траектории. При этом ловушки быстрее выходят из поля зрения ГСН ракеты, а рули ракеты находятся практически в нейтральном положении, что обуславливает повышенную готовность ракеты к выполнению максимального маневра в любом направлении.

Изобретение 1. Предлагаемая система кроме усилителей и приводов рулей содержит в качестве датчика цели две цифровых фотокамеры, одна из которых работает в оптическом диапазоне, а другая - в инфракрасном (далее «оптическая фотокамера» и «инфракрасная фотокамера»). Пиксели этих фотокамер связаны блоком порогового пропускания сигналов (далее ППС) оптической фотокамеры (например, с помощью динисторов) и блоком выключения соответствующих инфракрасных пикселей (далее ВИП) инфракрасной фотокамеры (например, двухтранзисторной схемой «электронный ключ»).

То есть сигнал с пикселей оптической фотокамеры не проходит дальше, пока его уровень не достигнет определенной яркости (ярче, чем сигнал от сопла реактивного двигателя самолета, неба, облаков). Если же сигнал превышает эту яркость, например сигнал от солнца, от тепловой ловушки, то он проходит блок ППС почти без ослабления и поступает на блок ВИП, который отключает изображение с того же самого участка инфракрасной фотокамеры, см. фиг.1.

То есть там, где на виртуальном изображении оптической фотокамеры имеется яркая засветка, на том же участке инфракрасной фотокамеры «вырезается» черное пятно, и ракета как бы не «видит» источник инфракрасного излучения, если он одновременно является источником видимого излучения. Таким образом, ракета не реагирует на солнце, ловушки и горящие самолеты.

Следует заранее предусмотреть контрмеры противника: для того чтобы выдать истинную цель за ложную, достаточно увеличить светимость сопла самолета, для чего можно вдуть в сопло порошок алюминия или просто дополнительное количество топлива. В этом случае система на виртуальном инфракрасном изображении «вырежет» черное пятно на месте сопла самолета и инфракрасных сигналов не будет.

Если это произошло достаточно близко от самолета, то ракету это не обманет - она при достаточной чувствительности перенацелится на передние кромки крыльев или лопастей, или на воздухозаборники. Но если до цели еще далеко, и она идентифицируется как точечный объект, это может обмануть ракету.

Чтобы этого не произошло, система наведения имеет электронный ключ управления (далее ЭКУ), который по нулевому сигналу (отсутствию сигнала) с инфракрасной фотокамеры через линию задержки (допустим, реле времени на 0,001 с) отключает оптически видимый канал (например, блок ВИП), и ракета опять видит все инфракрасные цели. Потом ЭКУ опять включает оптический канал, а инфракрасный канал опять «слепнет». В таком пульсирующем режиме ракета тем не менее будет уверенно наводиться на самый мощный источник инфракрасного излучения до тех пор, пока инфракрасная фотокамера не захватит входные кромки крыльев. Или ракета до конца будет наводиться на самый мощный тепловой источник.

Розничная цена цифровых фотоаппаратов упала до 2000 рублей, а размеры встроенных в мобильные телефоны фотокамер с разрешением 2 Мпк приблизились к размерам горошины. Поэтому предлагаемая часть системы наведения будет иметь размеры наперстка, вес - несколько граммов, и стоимость около 10000 рублей.

Если ГСН комбинированная и имеет, кроме оптического и теплового каналов, еще и активную или полуактивную радиолокационную станцию (далее РЛС), то надежность и помехозащищенность наведения могут быть значительно повышены. Для этого селективный оптико-инфракрасный сигнал о цели и сигнал радиолокационного канала в том же формате и масштабе подаются на логический блок «И-ДА», сигнал с которого поступает далее в систему для исполнения, на усилители и приводы рулей.

То есть ракета наводится только на ту цель, которая излучает инфракрасное излучение, не имеет сильного оптического излучения и отражает активный или пассивный радиолокационный сигнал.

Такая комбинированная схема особенно полезна в облачную погоду: если самолет, обнаружив пуск ракеты, нырнет в облачность, может произойти срыв захвата тепловой ГСН. А наличие радиолокационного канала позволит продолжить атаку. Соответственно, наличие теплового канала позволяет ракете быть нечувствительной к искусственным и естественным помехам в радиоканале.

Изобретение 2. Наведение ракеты по скорости прецессии гироскопов недостаточно качественное. Предлагаемая ракета имеет простую и надежную, не боящуюся электронного импульса систему получения пересекающейся траектории. Система состоит из подвижной в двух плоскостях ГСН любого типа, усилителя, приводов рулей, датчика положения рулей и приводов ГСН. Для ракеты с крестообразным крылом необходимо два таких канала - по горизонтали и по вертикали.

Алгоритм работы системы таков: после пуска ГСН управляет ракетой, отклоняя рули. Но и сама ГСН отклоняется в сторону, противоположную отклонению рулей (при аэродинамической схеме «флюгерная утка», а при задних и газовых рулях - наоборот), причем со скоростью, пропорциональной отклонению рулей. То есть совместно с приводом ГСН, накапливающим отклонение, происходит пропорционально-интегральное («ПИ-регулирование») курсового угла цели относительно ракеты. Отклонение ГСН будет нарастать до тех пор, пока датчики отклонения рулей от «нуля» (нейтрального положения) не покажут «0», то есть рули встанут в нейтральное положение. После чего ГСН останется в том же положении, а ракета будет лететь по прямой траектории. При этом курсовой угол цели по отношению к ракете будет постоянным. Что, как известно, приводит к попаданию в цель, см. фиг.2.

Желательно, чтобы ракета не вращалась, по крайне мере, быстрее 0,2 оборота в секунду. Специальных мер для этого можно не предпринимать. Достаточно соблюдать точность изготовления и производить контрольную продувку ракеты в аэродинамической трубе. Хотя, конечно, надежней иметь стабилизацию крена с помощью «ножниц» и рулей.

Анализ промахов ракет показал, что, как правило, ракеты проходят позади целей. Это связано с тем, что обработка сигнала системой наведения требует времени. Существуют системы поправки наведения, например сдвиг наведения с сопла на фюзеляж, но они достаточно сложны. Предлагаемая ракета имеет простую и надежную коррекцию траектории пересечения на небольшое опережение.

Для этого описанная система дополнительно содержит механизм или электронный элемент (например, мостовую электрическую схему), смещающий «0» датчика положения рулей на фиксированную или зависящую от скорости величину (допустим, на 0,1 градуса) в ту же сторону, в какую повернута ГСН относительно продольной оси ракеты (см. фиг.3 пунктиром). Или после того, как рули встали в «0», дополнительно смещает ГСН в ту же сторону.

В результате ракета летит с несколько большим, чем надо, упреждением и пролетела бы впереди цели, если бы не постоянный полет по очень пологой дуге. На заключительном этапе полета ракета «недорегулирует» и попадет на 2-3 метра впереди источника излучения (впереди сопла, впереди центра эффективной площади радиолокационного рассеяния).

Не следует опасаться, что наличие механизма поворота ГСН, быстродействие которого во избежание перерегулирования должно быть меньше быстродействия рулей, но больше скорости реакции ракеты на рули, уменьшит маневренность ракеты. Этого не произойдет - ГСН всегда с опережением будет отслеживать цель, а быстродействие рулей останется на прежнем уровне.

Для ракеты с плоским крылом система будет иметь несколько иной вид. ГСН должна управляться в двух плоскостях и по крену, то есть крен ракеты должен приводить к такому же крену в ту же сторону ГСН относительно своей оси. Крен ГСН можно производить не механически, а виртуально - смещая ориентацию развертки изображения. Ракета по прежнему должна иметь два канала управления, но не по горизонтали и вертикали, а по тангажу и крену. Для этого она должна иметь всего два раздельно управляемых (левый и правый) горизонтальных аэродинамических и/или газовых руля. То есть все отличие в том, что управление ракеты по рысканью производится не отклонением вертикальных рулей, а пропорциональным креном (вплоть до 90 градусов) и соответствующим увеличением тангажа. В остальном система идентична вышеописанной с той разницей, что коррекция траектории на опережение производится небольшим смещением «0» датчика крена в сторону отклонения ГСН. Или, также как в варианте с крестообразным крылом, дополнительным смещением ГСН в сторону цели.

На фиг.1 изображена блок-схема наведения (фрагмент), состоящая из оптической и инфракрасной фотокамер ОФК и ИФК, блока порогового пропускания сигналов ППС, блока выключения инфракрасных пикселей ВИП, электронного ключа управления ЭКУ, линии задержки ЛЗ, и дополнительно может иметь радиолокационную станцию РЛС и логический блок «И-ДА».

На фиг.2 показан процесс наведения ракеты в точку упреждения, где: 1 - ракета, 2 - ГСН, 3 - рули, 4 - цель.

На фиг.3 изображена блок-схема системы наведения (фрагмент - только система упреждения) по одному направлению, где: ГСН - головка самонаведения, П - привод головки, УС - усилитель, СН - блок смещения нуля датчика положения рулей ДР.

Работает система на фиг.1 так: сигнал с оптической фотокамеры ОФК через блок порогового пропускания сигналов ППС поступает на блок выключения инфракрасных пикселей ВИП, который «вырезает» соответствующее оптическому сигналу место на изображении инфракрасной фотокамеры ИФК. При отсутствии сигнала с ИФК электронный ключ управления ЭКУ через линию задержки ЛЗ периодически отключает блок ВИП, и сигнал с ИФК становится пульсирующим, что не мешает наведению на цель.

Дополнительно система может иметь РЛС, сигнал с которой поступает на блок «И-ДА», откуда при наличии сигнала с ИФК логический сигнал поступает далее в систему для исполнения.

После запуска ракеты 1 на фиг.2, 3 по цели 4, летящей влево, ГСН 2 подает сигнал, и рули 3 поворачиваются влево. При этом датчик положения рулей ДР выдает сигнал на усилитель УС, и привод П поворачивает ГСН вправо. Но ГСН стремится удержать цель в центре своего поля зрения и поэтому командует ракете поворачивать влево в сторону упреждения до тех пор, пока рули не займут нейтральное положение. Ракета летит по пересекающееся прямой траектории «п». Полезно также навести ракету на пересекающуюся траекторию и повернуть ГСН на цель еще до пуска.

Система может дополнительно иметь блок смещения нуля датчика рулей СН, который смещает нейтральное положение датчика рулей (например, электрическим способом с помощью управляемой мостовой схемы) вправо. В этом случае ракета летит по опережающей пологой дуге «о» и попадет в фюзеляж несколько впереди точки прицеливания.

1. Система наведения противосамолетных ракет, содержащая приводы рулей и усилители, отличающаяся тем, что она снабжена блоком порогового пропускания сигнала, цифровой оптической фотокамерой и цифровой инфракрасной фотокамерой, блоком выключения пикселей цифровой инфракрасной фотокамеры, электронным ключом, линией задержки, при этом оптическая фотокамера соединена через блок порогового пропускания сигнала с блоком выключения пикселей инфракрасной фотокамеры, а инфракрасная фотокамера через электронный ключ и линию задержки соединена с блоком выключения пикселей инфракрасной фотокамеры для блокирования сигнала с оптической фотокамеры.

2. Система по п.1, отличающаяся тем, что она содержит активную или полуактивную радиолокационную станцию и логический блок "И-ДА", входы которого соединены с радиолокационной станцией и с инфракрасной фотокамерой, а выход - с системой наведения.

3. Система наведения противосамолетных ракет, содержащая приводы рулей и усилители, отличающаяся тем, что она снабжена подвижной головкой самонаведения и датчиками положения рулей, причем головка самонаведения выполнена с возможностью отклонения по сигналу датчика положения рулей в сторону, противоположную отклонению рулей.

4. Система по п.3, отличающаяся тем, что она снабжена механизмом или электрической схемой, выполненными с возможностью смещения нейтрального положения датчика положения рулей в ту же сторону, что и отклонение головки самонаведения от продольной оси ракеты или дополнительного смещения головки самонаведения в ту же сторону

Под системой управления управляемой ракетой понимается совокупность устройств, определяющих положение ракеты и цели и обеспечивающих выработку команд управления и наведение ракеты на цель в течение всего времени полета до встречи с целью. Система управления обеспечивает также решение ряда других задач, предшествующих наведению ракеты на цель (управляет процессами подготовки пуска, самого пуска ракеты и др.)

Можно представить бесчисленное количество траекторий сближения ракеты с целью. Очевидно, из всего количества возможных траекторий при стрельбе по цели необходимо использовать одну, наиболее целесообразную с точки зрения тактических и технических соображений траекторию. Требуемая траектория сближения ракеты с целью задается уравнениями связи, определяющими движение ракеты в зависимости от координат и параметров движения цели. Характер этих связей обусловливается выбором метода наведения.

Следовательно, для сближения ракеты с целью, система управления в каждый момент времени должна не только иметь информацию о координатах и параметрах движения пели и ракеты, но и задавать характер связи между ними, определять меру нарушения этих связей и на основания этого вырабатывать команды управления, обеспечивающие движение ракеты по требуемой траектории.

Выработка команд управления, т. е. наведение зенитной управляемой ракеты на цель, как правило, осуществляется лишь по направлению в двух взаимно перпендикулярных плоскостях. Меру нарушения связи в каждой плоскости наведения принято называть параметром управления или сигналом рассогласования. Этот сигнал пропорционален отклонению регулируемой величины от требуемого значения, т. е. является ошибкой системы управления. Система управления, изменяя направление полета ракеты, все время должна работать на устранение этой ошибки и держать ее в таких пределах, при которых обеспечивается заданная точность сближения ракеты с целью.

Системами телеуправления называются такие системы, в которых требуемое движение ракеты определяется наземным пунктом наведения, непрерывно контролирующим параметры траектории цели и ракеты. В зависимости от места формирования команд (сигналов) управления рулями ракеты эти системы делят на системы наведения по лучу и командные системы телеуправления.

В системах наведения по лучу направление движения ракеты задается с помощью направленного излучения электромагнитных волн (радиоволн, лазерного излучения и др.). Луч модулируется таким образом, чтобы при отклонении ракеты от заданного направления ее бортовые устройства автоматически определяли сигналы рассогласования и вырабатывали соответствующие команды управления ракетой.

В командных системах телеуправления команды управления полетом ракеты вырабатываются на пункте наведения и по линии связи (линии телеуправления) передаются на борт ракеты. В зависимости от способа измерения координат цели и определения ее положения относительно ракеты командные системы телеуправления делятся на системы телеуправления первого вида и системы телеуправления второго вида. В системах первого вида измерение текущих координат цели осуществляется непосредственно наземным пунктом наведения, а в системах второго вида - бортовым координатором ракеты с последующей их передачей на пункт наведения. Выработка команд управления ракетой как в первом, так и во втором случае осуществляется наземным пунктом наведения.

Самонаведением называется автоматическое наведение ракеты на цель, основанное на использовании энергии, идущей от цели к ракете. Головка самонаведения ракеты (ГСН) автономно осуществляет сопровождение цели, определяет параметр рассогласования и формирует команды управления ракетой.

По виду энергии, которую излучает или отражает цель, системы самонаведения разделяются на радиолокационные и оптические (инфракрасные или тепловые, световые, лазерные и др.).

В зависимости от места расположения первичного источника энергии системы самонаведения могут быть пассивными, активными и полуактивными.

При пассивном самонаведении энергия, излучаемая или отражаемая целью, создается источниками самой цели или естественным облучателем цели (Солнцем, Луной). Следовательно, информация о координатах и параметрах движения цели может быть получена без специального облучения цели энергией какого-либо вида.

Система активного самонаведения характеризуется тем, что источник энергии, облучающий цель, устанавливается на ракете и для самонаведения ЗУР используется отраженная от цели энергия этого источника.

При полуактивном самонаведении цель облучается первичным источником энергии, расположенным вне цели и ракеты.

Методом наведения называется заданный закон сближения ракеты с целью, который в зависимости от координат и параметров движения цели определяет требуемое движение ракеты, обеспечивающее попадание ракеты в цель. Рассмотрим некоторые из существующих методов.


Положение ракеты относительно цели однозначно определяется расстоянием между ракетой и целью и направлением в пространстве линии ракета - цель. Если движение цели задано, то изменение этих координат во времени однозначно определяет траекторию полета ракеты (рис. 1).

Рис. 1. Углы и вектора системы ракета (Р) – цель (Ц).

Метод погони – направление на цель совпадает с направлением оси ракеты :

Метод наведения с постоянным углом упреждения :

Метод пропорционального сближения − скорость поворота вектора скорости ракеты пропорциональна угловой скорости поворота вектора ракета-цель:

В данной работе для имитации АСУ ПТУР будет использован метод погони, для которого примерная траектория полета ракеты и цели показана на рис. 2.

Рис. 2. Траектория цели и ракеты при методе погони.