Катер на воздушной подушке. Технические характеристики и фото

Для освоения природных ресурсов отдаленных районов нашей страны требуются транспортные средства повышенной проходимости, обладающие свойством амфибийности, то есть способностью переходить с воды на сушу и обратно. Однако практика показала, что в ряде труднодоступных и климатически суровых районов, характеризующихся большим количеством рек, озер и болот, использование гусеничных или колесных вездеходов крайне затруднено, а подчас и невозможно.

Это связано с тем, что здесь особенно сильно проявляются держащие свойства грунта. Известно, что на каждый квадратный метр поверхности корпуса машины, контактирующей с грунтом, налипает от 300 кг влажных песков до 4000 кг туго пластичных глин. Кроме того, из-за присасывания к грунту во время длительной стоянки или вынужденной остановки машина лишается возможности двигаться.

В зимних условиях движение затруднено тем, что вне дорог мала несущая способность снежного покрова. По льду рек и озер особенно сложно перемещаться в периоды ледостава, таяния и разрушения льда, когда даже плавающая техника не может преодолевать его сопротивление.

Следует также отметить, что в последнее время существенно возросли требования к экологичности транспорта, в частности, введены ограничения на степень разрушения им верхних слоев почвы.

С учетом всех перечисленных факторов наиболее целесообразным считают использование транспортных средств на воздушной подушке, у которых давление на грунт не превышает 2- 5 кПа, что существенно ниже, чем у гусеничных транспортеров-снегоболотоходов (17-24 кПа). Благодаря этому они обладают лучшей проходимостью и не разрушают поверхностный слой почвы.

Практическое применение катеров и судов на воздушной подушке в нашей стране было начато с 1935 г. Группой под руководством конструктора и ученого В. Левкова был проведен ряд исследований. За период до 1941 г. они создали и опробовали 15 аппаратов на воздушных подушках массой от 2,25 до 14,7 т. Например, в 1937 г. дюралевый катер на воздушной подушке Л-5 в ходе испытаний развил скорость 137 км/ч. Уже на раннем этапе развития судов на воздушной подушке была выявлена их уникальная способность двигаться над водой, болотом, песчаными перекатами, льдом залива и равнинной местностью.



В ходе эксплуатации судов и катеров на воздушной подушке накапливался опыт, стала определяться их специализация. Если раньше они использовались преимущественно на воде или в качестве амфибий, то теперь появились их наземные варианты - самоходные и буксируемые с помощью тягача, а также платформы на воздушной подушке, предназначенные для перевозки различных грузов в труднодоступных районах. Однако основным, магистральным направлением развития транспортных средств на воздушной подушке является создание судов и катеров, в наибольшей степени отвечающих потребностям народного хозяйства.

Воздушная подушка представляет собой полость под корпусом транспортного средства, в которую непрерывно нагнетается воздух под давлением более высоким, чем атмосферное Ее границы образованы твердыми или мягкими стенками, а также их комбинацией. Твердые стенки воздушной подушки судна принято называть скегами, а мягкие - гибким ограждением.

Устойчивость воздушной подушки обеспечивается за счет истечения воздуха, выходящего через узкий зазор между нижней кромкой стенок ограждения и опорной поверхностью. Струи воздуха вместе с податливым ограждением обеспечивают равномерное отслеживание неровностей грунта и взволнованной водной поверхности. Аппараты с бортовыми скегами, но с носовыми и кормовыми гибкими секциями стали называть скеговыми, а имеющие гибкое ограждение по всему периметру воздушной подушки - амфибийными катерами на воздушной подушке.

Суда на воздушной подушке - видео

Гибкое ограждение изготавливают из различных сортов химического волокна, образующего сетчатую тканевую основу, покрытую резиноподобными полимерами - типа неопрена, полиуретана, с добавками натуральных каучуков. Добавки способствуют сохранению эластичности материала даже при значительном понижении температуры воздуха (до -40-50 °С).

На практике хорошо зарекомендовало себя двухъярусное гибкое ограждение, состоящее из баллона-ресивера (верхний ярус) и набора съемных элементов в виде примыкающих друг к другу сегментов (нижний ярус). Воздух поступает из нагнетателя в ресивер, а из него через систему отверстий в полость воздушной подушки, ограниченную съемными элементами. В ресивере создается более высокое давление, чем в воздушной подушке, благодаря этому он выполняет формообразующую и амортизирующую роль при восприятии динамических нагрузок. Съемные элементы, раздвигаясь, «обтекают» сосредоточенные препятствия, при этом сохраняется заданный воздушный зазор. Это позволяет преодолевать пни, валуны и кочки высотой 0,5-0,8 м, что весьма затруднительно для гусеничных машин.

Увеличению остойчивости подобных транспортных средств способствует разделение полости воздушной подушки на отдельные отсеки (камеры) продольными и поперечными килями. Таким образом предотвращается возможность наиболее опасной аварии - опрокидывания вследствие подлома и затягивания гибкого ограждения под корпус. Энергозатраты на образование воздушной подушки, а также неизбежные потери части полезного объема под устройство каналов, подводящих воздух к ресиверу от нагнетателей, компенсируют, как правило, за счет повышения эффективности движителей.

Суда-амфибии на воздушной подушке

В амфибийных судах на воздушной подушке чаще используют движитель аэродинамического типа, например, воздушный винт. Его размещают в кольцевой насадке, что способствует увеличению сечения отбрасываемой воздушной струи по сравнению с открытым винтом. В результате чего увеличивается тяга и снижается шум при работе.

Другим способом, позволяющим увеличить тяговые характеристики судов на воздушной подушке, является применение, противоположно вращающихся винтов, которые располагают попарно. Стремление сохранить величину тяги воздушных винтов и при этом уменьшить их диаметр привело к созданию вентиляторных движителей. Они имеют увеличенные число лопастей и длину кольцевой насадки. Движители такого типа по конструкции максимально близки к осевым нагнетателям.

К аэродинамическим движителям относят также и воздушно-сопловые, в которых источником тяги является струя воздуха, истекающая через сопло из полости воздушной подушки или из выходного канала нагнетателя. Сопловой движитель судна на воздушной подушке прост по конструкции, однако его кпд в 2 раза ниже, чем у винтового. Поэтому в качестве маршевого движителя, как правило, применяют воздушный винт. Сопловой же в основном используют в качестве подруливающего устройства, обеспечивающего выполнение маневров на малых скоростях.

Большей эффективности подъемной силы воздушной подушки стремятся достигнуть снижением массы корпуса судна. Поэтому для его изготовления используют детали из легких алюминиевых сплавов, которые соединяют заклепками или сваркой. Надстройки и рубки скоростных аппаратов часто делают из стеклопластика.

При выборе двигателей для катеров и судов предпочтение отдают, как правило, автомобильным (карбюраторным или дизельным) с воздушным охлаждением. Для распределения мощности на валы нагнетателей и движителей, которые, как правило, располагаются на различных уровнях, применяют плоскозубчатые ременные передачи.

Уменьшение массы наряду с использованием благоприятных аэродинамических форм и совершенных двигателей позволяет транспортным средствам на воздушной подушке на скоростях, превышающих 50 км/ч, успешно конкурировать не только с быстроходными водоизмещающими судами, но и с глиссерами и судами на подводных крыльях.

Рассматривая амфибийные качества подобных судов, следует достаточно критично оценить распространенное представление о них как о неограниченно всепогодном, вездеходном и всесезонном транспортном средстве. Необходимо помнить, что отсутствие контакта с опорной поверхностью кроме преимуществ порождает и некоторые проблемы. Становится, например, сложно преодолевать подъемы, избегать бокового сноса и ветрового дрейфа.

Этапы развития судов на воздушной подушке в России

В нашей стране развитие транспортных средств на воздушной подушке прошло несколько этапов. Так, на заводе «Красное Сормово» в Горьком вначале был построен экспериментальный 5-местный катер «Радуга» массой 3,3 т с авиационным поршневым двигателем мощностью 162 кВт (220 л. с). Он имел жесткосопловую схему образования воздушной подушки, его скорость достигала 110 км/ч. Позднее катер был оборудован различными типами гибкого ограждения и продемонстрировал удовлетворительные амфибийные качества в летнее и зимнее время, мог преодолевать уклоны до 10°, переходить через поля плавающих бревен.

Несколько позднее было разработано и испытано судно на воздушной подушке «Сормович» пассажировместимостью 50 человек. В качестве двигателя на нем применялась авиационная турбина мощностью 1700 кВт (2300 л. с). Корпус судна был изготовлен из алюминиевого сплава. При массе 36,4 т машина развила скорость 100 км/ч. В ходе испытаний на аварийное торможение было установлено, что перегрузочные ускорения при отключении главного двигателя на скорости 50-70 км/ч составляют 0,2-0,5 g, что обусловило возможность эксплуатации судна с этими скоростями на мелководье. В конце испытаний «Сормович» совершил пробную перевозку пассажиров по линии протяженностью 274 км. В зимнюю навигацию была доказана возможность его перемещения над ледовым полем толщиной 35-40 см с отдельными торосами высотой 40-50 см и снежным покровом глубиной до полуметра.

Затем конструкторы вернулись к созданию новых вариантов катера «Радуга». Было построено судно на воздушных подушках «Радуга-3», предназначенное для перевозки сменных вахт бурильщиков в районе Сургутского нефтегазоместорождения. Этот 10-местный катер с дизельным двигателем мощностью 220 кВт (298 л. с.) и скоростью 70 км/ч изготовлен из легкого сплава и имеет массу 3,7 т. Нагнетатель типа осевого вентилятора выполняет две функции: создает воздушную подушку и обеспечивает движение.

В Центральном конструкторском бюро «Нептун» был глубоко проанализирован весь существующий опыт создания средств на воздушной подушке, основанный на использовании преимущественно авиационной техники. В результате установили, что из-за относительно высокой строительной стоимости и больших эксплуатационных затрат коммерческая эксплуатация таких судов убыточна.

С учетом этих факторов сформулировали основные направления дальнейшей деятельности: разработка сварного корпуса, использование дизельной энергетической установки, применение воздушных винтов с упрощенным приводом в направляющих насадках через плоскозубчатые ременные передачи. К научной и экспериментальной проработке проектов были привлечены специалисты ЦНИИ имени академика А. Н. Крылова.

Катер на воздушной подушке «Барс»

Первым изготовили малый катер на воздушной подушке «Барс», который сразу нашел применение в народном хозяйстве, хотя упомянутые технические решения были реализованы на нем еще не в полной мере. К настоящему времени несколько десятков этих 8-местных аппаратов, оснащенных авиационными двигателями мощностью 176 кВт (230 л. с), несут почтовую службу в системе Минсвязи РСФСР, выполняют поисково-спасательные функции, а также успешно используются в качестве патрульных судов в системе МВД СССР. Эксплуатируются они в труднодоступных местах, включая мелководные соленые озера, участки засушливых степей, песчаные отмели, зоны лесосплава, как в летних, так и в зимних условиях. Как показала практика, эти катеры оказались значительно эффективней применявшихся ранее серийных аэросаней-амфибий. При массе 2,2 т максимальная скорость «Барса» 80 км/ч.


Катер на воздушной подушке типа «Гепард» имеет корпус из алюминиевых сплавов марок АМг5 и АМг61. На нем установлены два воздушных винта в кольцевых насадках. Благодаря специальной профилировке лопастей уменьшилась частота вращения винтов и снизился уровень шума при их работе. На входной кромке лопастей, выполненных из упрочненного стеклопластика, предусмотрена защитная накладка из нержавеющей стали.

Воздушная подушка образуется за счет подачи воздуха от центробежного нагнетателя, рабочее колесо которого снабжено стеклопластиковыми профилированными лопатками. Крутящий момент от автомобильного двигателя ЗМЗ-53 мощностью 88 кВт (120 л. с.) передается к нагнетателю с помощью карданных валов и плоскозубчатых ременных передач. Предусмотрена возможность отключения трансмиссии от двигателя, что облегчает его запуск при низких температурах. Для выдерживания курса, а также для управления дифферентом катера за кольцевыми насадками установлены вертикальные и горизонтальные аэродинамические рули.

Рубка имеет теплоизоляционное покрытие и снабжена системой воздушного обогрева. С помощью блоков плавучести, расположенных под навесными секциями, обеспечивается удержание судна на плаву при затоплении любого отсека. Это 4-местное малое судно массой 1,8 т развивает на воде скорость 60 км/ч, а на твердой ровной поверхности 70 км/ч и используется спасательными службами, водной милицией, различными административными подразделениями природных заказников, почтовыми службами, лесозаготовительными, нефтегазовыми и энергетическими предприятиями, крупными охотничьими хозяйствами Сибири. Серийное производство «Гепардов» было освоено на Свирской судоверфи.

18-местный пассажирский катер на воздушной подушке «Пума» оснащен двумя бензиновыми двигателями ЗМЗ-53. Одной из его модификаций является реанимационный катер скорой медицинской помощи, который может служить плавучей операционной. Он способен достигать самые отдаленные и труднодоступные пункты речных бассейнов.

Скорость катера, несмотря на увеличение его массы до 5,7 т, ос
талась такой же, как у «Гепарда». Каждый из двух двигателей приводит в действие спаренный центробежный нагнетатель и воздушный винт в кольцевой насадке. Возможно перемещение судна при" работе одного двигателя. В остальном конструктивные решения повторяют принятые ранее на «Гепарде».

Катер на воздушной подушке «Пума» в медицинском варианте была испытана в районах Томской области, где преодолела 400 км по торосистому льду с высотой препятствий до 0,6 м, то есть равных высоте гибкого ограждения. Пассажирский вариант катера прошел испытания на шельфе Северного Каспия, осуществив самостоятельный переход в этот район от Волгограда. Установлено, что зимой амфибийным катерам на воздушной подушке-требуется мощность главных двигателей" на 20- 30% меньше, чем летом при скорости на 5-10 км-выше.


Последней разработкой ЦКБ «Нептун» стало судно на воздушной подушке типа «Ирбис», которое имеет следующие характеристики: число мест в морском варианте вместе с экипажем 30, в речном варианте 34, масса 10,7 т, максимальная скорость хода 57 км/ч, мощность двух дизелей 280 кВт (380 л. с).

В этом судне получили развитие многие конструкторские решения, которые ранее были применены при создании «Пумы». Главным отличием является то, что «Ирбис» имеет дизельный двигатель с воздушным охлаждением вместо бензинового. Это позволило сделать судно более экономичным. Глубоко были проработаны вопросы повышения прочности корпуса. В результате обеспечена возможность движения в прибрежных морских районах с высотой волны до 1,25 м.

В ходе испытаний головного судна были осуществлены переходы по маршрутам Москва-Ленинград и Москва- Северный Каспий (около 15 тыс. км). Мореходные испытания состоялись в Финском заливе. При этом была выполнена серия измерений напряженного состояния конструкций судна при движении на волнении. По результатам испытаний судно типа «Ирбис» рекомендовано использовать при температурах окружающего воздуха от -30 "С до +40 °С на засоренных и порожистых участках рек с сильным течением, в зарослях камыша и на болотах, ледяных и заснеженных поверхностях, плавающем льду.

При сравнении судна на воздушной подушке «Ирбис» с гусеничными плавающими машинами ГТ-Т и К-61, а также с американским судном на воздушной подушке «Хаски» 2500ТД (все имеют дизельные силовые установки) по затратам на топливо для перевозки 1 т груза на 1 км было выявлено его преимущество перед всеми амфибиями в режимах движения по воде. Сопоставимые данные для суши (вернее, для ровного твердого экрана) имеются только по группе транспортных средств с бензиновыми двигателями. Из их анализа следует, что катер на воздушной подушке «Пума» сохраняет свое преимущество перед автомобилем-амфибией БАВ, если водная часть пути составляет не менее 63% его общей протяженности.

В настоящее время накопленный опыт проектирования, постройки и эксплуатации скоростных катеров и судов на воздушной подушке подтверждает способность отечественного судостроения поставлять народному хозяйству целый набор таких катеров и судов, а также возможность создания в перспективе транспортных средств, в большей степени ориентированных на озерно-морскую эксплуатацию и имеющих пассажировместимость 100 человек и более.

Вопросы проектирования малых судов на воздушной подушке

Парящие суда - представляют собой принципиально новое средство водного транспорта, обладающее высокой проходимостью и большой скоростью. Для них доступны скорости, превышающие 200 узлов; их эксплуатация возможна не только на мелких реках с выходом на пологий берег, но и на болотах, надо льдом и т. п. Суда на воздушной подушке представляют значительный интерес и для любителей водно-моторного спорта и для туристов.

Проектирование и постройка судов на воздушной подушке сложнее, чем обычных водоизмещающих или глиссирующих катеров. Однако опыт постройки мелких судов на воздушной подушке отдельными любителями показывает, что и эта работа доступна не только специализированным проектным организациям и предприятиям.

Ниже рассмотрены основные вопросы проектирования и постройки мелких судов на воздушной подушке, причем некоторые вопросы теории изложены в упрощенной форме. Приведенные в статье практические коэффициенты выведены на основе данных, полученных в результате испытаний отечественных и зарубежных опытных аппаратов, в том числе и построенного (под руководством автора) студентами Одесского института инженеров морского флота опытного катера на воздушной подушке.

Существует несколько способов формирования воздушной подушки, однако опыт эксплуатации парящих судов еще недостаточен для того, чтобы уверенно дать предпочтение какому-либо одному из них. Существуют лишь примерные границы высот парения и скоростей, для которых может быть рекомендована та или другая схема.

Способы создания воздушной подушки

Камерный способ создания воздушной подушки

Как показано на рис. 1, днище судов этого типа представляет собой купол, являющийся камерой, в которую вентилятор нагнетает воздух. Повышенное давление в камере создает подъемную силу. Равновесное положение аппарата наступает, когда равнодействующая сил давления уравновешивает силы веса, а производительность вентилятора компенсирует вытекание воздуха из-под купола.

Однако камерная схема в таком виде не может быть применена для судна, так как она не обеспечивает одного из основных мореходных качеств - остойчивости. Этот недостаток судов, построенных по камерной схеме, может быть устранен устройством боковых поплавков (рис. 2) как у катамарана,

или секционированием днища (рис. 3) продольными стенками (вдоль бортов и не менее одной в промежутке между ними) с одновременной установкой поперечных захлопок.

Благодаря установке продольных стенок - «ножей» и захлопок (1, 2 на рис. 2) значительно снижаются затраты энергии на создание подушки. Однако ножи при больших скоростях хода вызывают значительное сопротивление движению, поэтому такого типа суда проектируют для скоростей хода, не превышающих 40-60 узлов.

На рис. 4 и 5 показаны аппараты с камерной схемой образования воздушной подушки (характеристики ряда аппаратов приведены в таблице ниже).

Проектные данные некоторых малых аппаратов на воздушной подушке

Наименование аппарата и место постройки Год постройки Размеры, мм Полный вес, кг Грузоподъемность, кг Скорость, узл. Высота парения, см Род движителей Мощность, л. с.
длина ширина высота габаритная
Аппараты на воздушной подушке с кольцевым соплом
«Радуга»
(СССР,
«Красное
Сормово»)
1962 9,4 4,12 - 3000 - 65 15 Возд.
винт
2х160
«Чайка» (СССР,
ОИИМФ)
1962 D-2,4* - 1,8 400 100 35 4-5 То же 2х18
«Кушенкрафт БН-1» «Бриттен-Норман», Англия 1960 D-5,75* - 3 2000 1000 35 30-40 2 возд.
винта
рег. шага
170
«Аэромобиль» (США) Проект 4,9 2,4 1,7 1000 360 35 30 - 208
«Эйркар-2500 АСМ-3-1» (США) 1960 6,4 2,4 1,5 1750 650 50 15 - 2х180
Модель 55 («Джирдайн К°», США) - 2,8 1,8 1,6 360 120 - 15 - 72
«Ховер-Скуттер» («Родес», США) 1961 - - - 270 90 5 20 Наклон аппарата 23
«GEM-I» (США) - 4,4 2,5 1,3 450 110 33 23 То же 2х40
«Х-3» - «Гамма-3» (США) - D-6,1* - 1,2 490 100 20 35-40 То же 43
«Х-4» (США)** - D-2,8* - 1,2 270 90 17 7 То же 15
«Х-2» (США) - D-2,4* - 1,2 220 80 8-5 10 То же 5
Аппараты на воздушной подушке с подкупольной камерой
«Хайдростик XHS-I» («Хьюз-Тул», США)*** 1960 6,8 3,2 2,5 3000 1000 25 Без отрыва 2 водяных винта 3х80
«DTV» (США)**** - 4,8 2,5 1,3 430 70 - То же - -
«Аэроскутер» (США)***** 1960 2,1 1,4 0,9 230 70 25 5 Воздушно-реактивный 16
Модель инж. В. Н. Кожохина (СССР) - 2,0 1,5 - 300 80 25 6 То же 2х13
«Аэромобиль» (США) 1959 2,5 1,8 0,8 270 80 34 15 Оклонение воздушной струи 72
«Эйркар АСМ-1-1» («Керитс-Райт», США) 1959 4,9 3,3 1,8 700 200 26 15 То же 85
«Эйркар АСМ-2-1» («Керитс-Райт», США) 1960 6,4 2,4 1,5 1750 650 26 30 То же 2х180
«Би» (США) 1960 3,6 1,8 1,3 800 300 50 10 То же 100
Опытная модель («Спертроникс», США) 1959 5,5 2,8 - 450 90 - 10 - -
Аппараты на воздушном крыле
«Аркоптер GEM-II» (США) 1962 5,73 2,33 - 637 273 75 30 Возд. винт 115
«Аркоптер GEM-III» (США) 1962 7,33 2,39 2,06 1140 685 90 46 То же 150
Примечание *Для круглых аппаратов указан диаметр D.
**Эластичная юбка.
***Бортовые кили и водяная завеса в носу и корме.
****Водяная завеса по периметру судна.
*****Для движения по земле.

Воздух от вентилятора поступает по соответствующим каналам к соплу, устроенному по периметру судна (рис. 6). Кольцевое сопло конструируется так, что воздух направляется под днище судна под некоторым углом к его центру, формирует область повышенного давления и создает воздушную завесу.

Мощность, затрачиваемая на создание воздушной подушки, у судов этого типа меньше, чем у аналогичных судов с камерной схемой (без ножей). Остойчивость обеспечивается лишь при малых углах наклона (до 2°), поэтому для улучшения остойчивости на больших углах крена устраивают два ряда сопел или секционированное днище (с перегородками или продольными и поперечными сопловыми устройствами).

Сопловая схема предпочтительна для судов с полным отрывом от поверхности воды и с большими, чем при камерной схеме, скоростями (до 60-80 узлов).

Корабль на воздушной подушке Джейран и Зубр СВП (судно на воздушной подушке)

Идеи часто появляются задолго до возможности их воплотить. А бывает, что и воплощенные идеи стоят особняком, обогнав свое время. Такой оказалась судьба летающих кораблей - судов на воздушной подушке.
Говоря попросту, судно на воздушной подушке (СВП) - это перевернутая тарелка, под которую нагнетается воздух: в результате сооружение приподнимается, а если сбоку поместить воздушный винт, то еще и перемещается. Отсутствие трения о поверхность - позволяет снизить сопротивление. Советские испытания летающих катеров шли с 30-х годов в условиях секретности. Занимался работами Владимир Левков.

первый боевой летающий катер на воздушной подушке Л5

Первая модель Левкова напоминала именно перевернутую тарелку, точнее, таз: в центре был электрический мотор с винтом, который нагнетал воздух, и «посудина» отрывалась от пола, зависая в воздухе. После нескольких экспериментальных машин в 1937 году появился первый боевой летающий катер - Л5. На его носу и корме располагались два авиационных двигателя М-45 по 850 лошадиных сил. Катер «выжимал» около 130 километров в час (на полном ходу ни одна торпеда не догонит) и спокойно двигался над водой и сушей, несмотря на вес в восемь тонн. Результаты испытаний показали его превосходство над торпедными катерами, однако выявили и недостатки: перегрев двигателей, малая остойчивость (то есть невысокая способность судна, выведенного из равновесия, вернуться к изначальному положению). Но главное - небольшой отрыв корпуса от поверхности, из-за чего машина не могла преодолеть даже невысокое препятствие.

Английский корабль на воздушной подушке SR-1

Не хватало всего одной детали. И нашел ее, как часто бывает, неспециалист. Англичанин Кристофер Коккерел, инженер- электронщик, в 1950 году открыл маленькую катеростроительную верфь. Совершенствуя свои катера, он хотел снизить их сопротивление с помощью воздушной «смазки». Он первым применил способ создания воздушной подушки: когда воздух не свободно вытекает под днище от вентилятора, а нагнетается узкими соплами, расположенными по периметру. Отрыв корпуса от поверхности достиг 300 мм - впятеро выше, чем у Левкова. По этой схеме фирма Saunders RO построила КВП (корабль на воздушной подушке) SR-1, на котором англичане в 1959 году пересекли Ла-Манш... и.. стали пионерами в создании корабля на воздушной подушке. Наши же, советские испытания летающих катеров шедшие с 30-х годов, велись в условиях секретности, вводя в недоумение случайных свидетелей - в результате весь мир признал отцом судов на воздушной подушке Коккерела.
После ухода Левкова из жизни все его материалы попали в Центральное морское конструкторское бюро «Алмаз» в Ленинграде. Разработки продолжались, но только по инициативе самого ЦМКБ - пока не заявил о себе Коккерел. Не отстать от англичан было делом чести - к тому же военное руководство прекрасно понимало, что скоростные и амфибийные качества СВП перспективны для использования в десантных морских операциях.

ПО ПРИНЦИПУ РАБОТЫ СВП РАЗДЕЛЯЮТ НА ТРИ ТИПА

  • Камерная схема: расположенный по центру вентилятор подает воздух под куполообразное днище, в специальную камеру, которая препятствует утечке воздуха.
  • Соплощелевая схема: подушку создает поток воздуха из кольцевого сопла, образованного центральной частью с плоским днищем и «юбкой». Воздушная завеса по периметру судна препятствует утечке воздуха из-под подушки.
  • Многорядная сопловая схема: подушку образуют ряды кольцевых циркуляционных сопел, в каждом из которых разный уровень создаваемого давления.

Принцип работы кораблей на воздушной подушке

Движение судов на воздушной подушке обеспечивается:

  • - воздушными винтами
  • - горизонтальными соплами, воздух в которые подается от подъемных вентиляторов
  • - дифферентом СВП таким образом, чтобы возникала сила тяги.

В пору гонки вооружений наибольшую опасность представляли американские авианосцы. Конечно, для противостояния авианесущим группировкам существовали ударные крейсеры и атомные подлодки с крылатыми ракетами. Но даже у самых мощных кораблей без захвата проливов и прилегающего побережья было мало шансов. Конструкторам «Алмаза» и поручили разработать корабль на воздушной подушке, который мог бы на большой скорости десантировать бронетехнику и морскую пехоту на берег. Как поговаривают самая важная задача которой и состоит в захвате и удержании Босфорского пролива, для выхода Черноморского флота на оперативный простор (наверное так и было во времена СССР). У ЦКБ к тому времени был только опыт создания маленького экспериментального катера МС-01 водоизмещением 20 тонн - от него требовалось перейти к кораблю водоизмещением 350 тонн. Параллельно с проектными работами шли исследовательские: пришлось осваивать новые технологии и материалы, разрабатывать трансмиссии, вентиляторы, легкие газотурбинные двигатели. Еще не было методов расчета ходкости, остойчивости, маневренных элементов, не был выбран способ образования воздушной подушки - сопловый или камерный.

Десантные корабли проект Джейран первые в мире серийные корабли на воздушной подушке, десант на волжский берег

Тормозная система СВП, как и тяговая, «завязана» на воздухе. Для улучшения остойчивости судна используют вертикальные стабилизаторы, такие же, как на самолетах. Впервые решено было применить резиновые гибкие ограждения, изобретенные в Англии и предназначенные для повышения мореходности и амфибийности карабля. После испытаний моделей, построенных по двум разным схемам, разработали «Джейран»: корабль на воздушной подушке для высадки двух танков на не оборудованный берег - такого в мире еще не было ни у кого. В 1970 году корабль был сдан.

десант на волжский берег с ДКВП типа Кальмар

АМФИБИЙНО-ДЕСАНТНЫЙ КВП «ДЖЕЙРАН»

  • Вооружение: две 30-мм установки АК-30
  • Десантовместимость - 4 танка ПТ-76 и 50 морских пехотинцев или 2 средних танка и 200 человек пехоты
  • Водоизмещение - 360 тонн
  • Скорость - 48 узлов (более 100 км/ч)
  • Дальность плавания полным ходом - 300 миль. Экипаж -21 человек.

Почти одновременно появился десантно-штурмовой катер «Скат»: он перевозил 40 десантников в полной экипировке, двигался со скоростью 50 узлов и легко ходил при волнении моря в пять баллов. В то время началось обострение ситуации на советско-китайской границе, и «скаты» использовались не только на Балтике и Черном море, но и на Амуре. Кроме того, четыре катера переоборудовали для спасения космонавтов - на случай их приземления на озере Иссык-Куль.

Скат десантные катера на воздушной подушке проект 1205

Изучение возможностей кораблей на воздушной подушке стимулировало появление новых моделей: десантовысадочного «Кальмара», КВП огневой поддержки десанта «Косатка», «Мурены», которая совмещала функции «Кальмара» и «Косатки».

Высадка десанта тот, что ближний Серна, дальний Кальмар

Но по мореходности и количеству перевозимой техники по-прежнему не было равных «Джейрану». Накопленный потенциал позволил говорить о развитии этого проекта с увеличением вместимости, скорости, вооружения и общей надежности.

«ЗУБР» - ЕДИНСТВЕННЫЙ В МИРЕ АМФИБИЙНЫЙ КОРАБЛЬ С УДАРНЫМ ВООРУЖЕНИЕМ .

ЗУБР ДЕСАНТНЫЙ КОРАБЛЬ НА ВОЗДУШНОЙ ПОДУШКЕ ПРОЕКТ 12322 фото

Так появилась идея «Зубра» - единственного в мире амфибийного корабля с ударным вооружением, который передали флоту в 1988 году.
Корабль на воздушной подушке Зубр предназначен для приема с берега (даже не оборудованного) морского десанта с боевой техникой, перевозки морем, высадки на побережье противника (один «зубр» доставляет на берег батальон морских пехотинцев, которые могут «не замочив ног» сразу вступить в бой) и огневой поддержки десантируемых войск. Для этого судна, которое спокойно преодолевает рвы, траншеи и болота, открыто до 70 процентов общей длины береговой линии морей и океанов мира.
ВЫДАЮЩИМСЯ ЭТОТ КОРАБЛЬ делает уникальное сочетание грузоподъемности, амфибийности и скорости. На испытаниях его разгоняли до 70 узлов (около 130 км/ч). При больших скоростях гибкое ограждение подламывается, и корабль «клюет носом», но на этот случай предусмотрена блокировка критических режимов по скорости и радиусу разворота. Управление требует такой осторожности и точности, что на «ЗУБРЕ» НЕТ РУЛЕВОГО - ЕГО ОБЯЗАННОСТИ ИСПОЛНЯЕТ КОМАНДИР .

Зубр фото, высадка десанта

Доводка любого корабля - непростой и долгий процесс. Например, характерные винты у «Зубра» заключены в насадки, благодаря чему тяга увеличивается в полтора раза. А насадка - выпиленное из пластмассы сооружение диаметром 7 метров - довольно субтильна. На первых испытаниях они ломались: для нужной добавки по тяге зазор между воздушным винтом и насадкой должен быть очень маленьким, а если винт колеблется, возможно задевание. Представьте, сколько потребовалось времени, чтобы довести этот, казалось бы, простой узел.

ВИНТЫ «Зубра» - опасное сочетание мощи и хрупкости, 10 тысяч лошадиных сил, диаметр 7 метров

По техническому потенциалу и тактико-техническим элементам «Зубр» до сих пор не имеет себе равных в мире, а потому востребован и зарубежными заказчиками. При этом зачастую требуется создание «экспортных» модификаций: например, в случае с Грецией - из-за необходимости тропикализации. Так что можно сказать, что развитие проекта продолжается. В начале 2000-х годов испытывали «зубр», построенный для Греции, корабль ненароком раздавил... грузовик. Тот служил маяком на берегу Финского залива, но из-за погасших фар превратился в невидимое препятствие.

Вооружение Зубра две 30-мм установки

Корабль на воздушной подушке Зубр СВП

  • Вооружение:
  • - для поражения самолетов и корабельных ракет - две 30-мм установки АК-630М («металлорезки»);
  • - для уничтожения береговых укреплений - две РСЗО МС-227 (морской аналог реактивной системы «Град»),
    Десантовместимость:
  • - 3 танка Т-80 и 80 морских пехотинцев
  • -10 БТР или 360 человек пехоты
  • Водоизмещение - 550 тонн
  • Скорость полного хода - 60 узлов. Грузоподъемность - 150 тонн
  • Мощность двигателей - более 50 тыс. л. с
  • Дальность плавания полным ходом - 300 миль. Экипаж - 27 человек.

Одно из отличий от зарубежных судов - сварная конструкция. Первые СВП (по авиационным традициям) делали клепаными, но их эксплуатация в море показала ненадежность такого соединения. Хотя со сварной конструкцией выше риск трещинообразования. За счет большой мощности на таких судах повышен уровень вибрации: три двигателя по 10 тысяч лошадиных сил только на движение, еще два двигателя такой же мощности работают как нагнетатели. 50 тысяч «лошадей», и все это в водоизмещении 550 тонн! Можно себе представить, насколько высока их энерговооруженность в сравнении с обычными судами.

Фото РСЗО МС-227 морской аналог реактивной системы «Град»

Для привода винтов, нагнетателей и других потребителей были созданы высокотемпературные газотурбозубчатые агрегаты. Система очистки воздуха обеспечивает длительную работу газовых турбин при солености моря до 30 промилле.
Отсутствие у СВП непосредственного контакта рулевых устройств с водой затрудняет маневрирование и делает судно зависимым от погоды. Поэтому были разработаны различные схемы управления, включая аэродинамические и струйные рули (реактивные сопла), винты изменяемого шага.

Зубр прект 12322 малый десантный корабль Евгений Кочешков и Мордовия, высадка десанта

УВЫ, в современной российской военной доктрине такому мощному кораблю применения пока нет - видимо, к орабль на воздушной подушке Джейран и Зубр СВП обогнал свое время. Впрочем, суда на воздушной подушке пользуются повышенным спросом на мировом рынке вооружений.

Логичная перспектива для амфибийных СВП - корабли типа «Зубра» для внутренних морей и высадочных средств для больших десантных кораблей. Но есть и другие сферы их применения.
СКОРОСТЬ СВП идеальна для «москитного флота»-маневренных боевых корабликов. Когда стало возможно размещать на малых кораблях торпеды и ракеты, легкий катер стал опасен для больших боевых судов. Бронировать его нельзя, значит, спасение от огня противника - скорость. При этом сделать скоростным малый водоизмещающий корабль сложно. Так что ПЕРВЫМИ НА ВОЗДУШНУЮ ПОДУШКУ ПОПЫТАЛИСЬ ПОСТАВИТЬ ТОРПЕДНЫЕ и РАКЕТНЫЕ КАТЕРА: «чистые» торпедоносцы тогда были в тупике (они не могли подойти к большому кораблю на расстояние залпа), а ракетоносцы не могли угнаться за ростом ракет.
Разработки «противолодочных» СВП тоже есть, но пока они не реализованы: сегодня главное - не уничтожить лодку, а найти ее. А это требует мощной гидроакустической системы, то есть дополнительного вооружения.

Десантный отсек корабля вид изнутри

Есть гражданские заказчики - конечно, их интерес касается судов более утилитарных. Еще одна особенность - всесезонность. Амфибийные суда могут ходить и по льду - им так даже легче (при движении над водой под давлением корабля создается ответная яма, которая дает сопротивление). Особенно это полезно на замерзающих реках и топях Сибири.
Когда по телевидению показали небольшой катер «Бриз», в ЦКБ «Алмаз» вереницей потянулись заказчики - разработчики сибирской нефти, которым трудно добираться до нефтепромыслов.

десантный корабль зубр пр 1232.2 1989 год

Не будем забывать и о любительском флоте: амфибии на воздушной подушке - универсальное транспортное средство для бездорожья, по которому часто добираются на охоту и рыбалку. С ними нет нужды в швартовке - выезжаете на берег, глушите мотор и сходите на сушу, причем спустить судно можно практически с любого берега.

Фото передающее масштаб корабля, Для судов массой около 100 тонн требуется энерговооруженность 25-35 киловатт на тонну, для еще более тяжелых - 15-20 киловатт

Похожая ситуация на газо - и нефтепромыслах Баренцева моря. Нелишне вспомнить и о громадном побережье на Севере: с возрождением Северного морского пути связан очень сложный вопрос перемещения грузов на берег. «Алмаз» на базе своих амфибийных судов уже проектировал для Севморпути катера-перегрузчики: подходит такой катер к борту, на него спускают груз, и вскоре он оказывается на берегу.

Десант даже ног не замочил, с ними нет нужды в швартовке - выезжаете на берег, глушите мотор и сходите на сушу, причем спустить судно можно практически с любого берега

КАЗАЛОСЬ БЫ, суда на воздушной подушке универсальны. Чем же сдерживается интерес к ним? Препятствия для летающих кораблей носят характер энергетический и экономический. При той же массе, что и водоизмещающее судно, АППАРАТ НА ВОЗДУШНОЙ ПОДУШКЕ ТРЕБУЕТ БОЛЬШЕГО РАСХОДА ТОПЛИВА - ВЕДЬ ЕМУ НАДО ДВИГАТЬСЯ НЕ ТОЛЬКО ВПЕРЕД, НО И ВВЕРХ. Двигатели для КВП мощные и легкие, а значит - дорогие, малоресурсные, сложные в изготовлении. Условности есть в производстве любой техники, но использование судов на воздушной подушке целесообразно только там, где эти условности перекрываются преимуществами - скоростью, амфибийностью, отсутствием подводной части.
ЭФФЕКТ ВОЗДУШНОЙ ПОДУШКИ применяется и в других областях. Американцы спроектировали «летающее» трансатлантическое пассажирское судно, автопроизводители создают авто на ВП. А в лондонском Институте ортопедии используется кровать для пациентов с тяжелыми ожогами, которые «лежат» на воздушной подушке.

Суда на воздушной подушке строит Россия, Англия, Япония, США, Франция. Сотни таких кораблей перевозят миллионы пассажиров на регулярных линиях в Ла-Манше, Ирландском море, на средиземноморском побережье Франции и Италии, в Канаде, США и странах Карибского моря, а также в Японии и Австралии. Большинство судов на воздушной подушке имеет вместимость до 100 пассажиров, но с 1968 г. началась эксплуатация судов типа 5К4, вмещающих 254 пассажира и 30 легковых автомашин. Эти суда пересекают Ла-Манш за 40 минут.

В середине семидесятых годов прошлого века отечественные судостроители из ЦМКБ «Алмаз» занялись новой для себя тематикой корабля на воздушной подушке скегового типа. В конечном счете эти работы вылились в строительство двух малых ракетных кораблей проекта 1239 «Сивуч». Корабли «Бора» и «Самум» способны разгоняться до 55 узлов и двигаться при волнении до восьми баллов. В сочетании с противокорабельными ракетами на борту ходовые качества «Сивучей» делают их грозным морским .

МРК на воздушной подушке «Самум»


Стоит отметить, на ранних стадиях разработки проекта 1239 рассматривалось два варианта схемы будущих кораблей. Это были «классический» корабль на воздушной подушке и корабль скегового типа. Оба они имели свои плюсы и минусы, поэтому было решено проверить перспективы обеих схем на практике. В первую очередь, рассматривались возможности корабля на воздушной подушке скегового типа. Эта тематика на то время была не слишком изученной и потому вызывала особый интерес. Для изучения ходовых качеств подобных кораблей во второй половине семидесятых была построена самоходная модель «Икар-1». Она представляла собой небольшой катер, одновременно напоминающий плоскодонное судно и катамаран. Центральная часть днища была плоской, а по бортам в воду опускались два скега – специальные панели особой формы, делавшие из катера катамаран. При движении в пространство между водой, днищем и скегами попадал воздух, который частично принимал на себя вес катера. Модель испытали и по результатам анализа собранной информации построили более крупный катер «Икар-2».

При испытаниях второго экспериментального плавсредства одни проблемы пропали, но другие проявились с новой силой. Так, при разгоне катера попадающий под днище воздух нередко доходил до гребных винтов. При определенных обстоятельствах это приводило к т.н. забросам – импульсному повышению оборотов винта и двигателя ввиду резкого перехода винта из воды в воздух. Иногда это приводило к срабатыванию систем защиты двигателя и отключению последнего. Также немало неприятностей инженерам доставило попадание воздуха в технологические заборные отверстия, например, в кингстоны системы охлаждения двигателя. Решить обе проблемы первоначально планировалось при помощи дополнительных высоких и длинных килей на скегах. На уже первые пробные «заезды» с ними показали бесперспективность подобной идеи.

Общий вид возможной модификации скегового корабля на воздушной подушке

На поиск решения сложившейся проблемы ушло немало времени, но результат того стоил. Найденный способ исключить попадание воздуха на винты и в кингстоны в итоге значительно повлиял на конечный облик отечественных кораблей на воздушной подушке скегового типа. Конструкторы «Алмаза» предложили ограничивать подачу воздуха под днище в зависимости от скорости движения. При малых скоростях в пространство между днищем катера и водой должно было поступать небольшое количество воздуха, а при достижении максимальной скорости – максимально возможное. Кроме того, гребные винты разместили на внешних поверхностях скегов, за пределами объема воздушной подушки. Таким образом, достигались наиболее высокие характеристики динамической разгрузки и силовой установки. В результате всех принятых мер экспериментальный катер «Икар-2» водоизмещением чуть менее 50 тонн мог двигаться при волнении до трех баллов со скоростью порядка 30 узлов. При этом, несмотря на силу волн, катер шел уверенно и мягко. В дальнейшем система с регулированием подачи воздуха под днище перешла к новым кораблям скегового типа.

Полученная при испытаниях «Икара-2» информация активно использовалась при разработке проекта 1239. К примеру, корабли «Бора» и «Самум» имеют систему регулирования подачи воздуха под днище. В зависимости от режима хода и необходимых характеристик, носовой и кормовой проемы между скегами могут закрываться специальными гибкими ограждениями. Таким образом, «Сивучи» могут двигаться, как простой катамаран, как судно с динамической поддержкой при помощи набегающего потока воздуха, а также как «классическое» судно на воздушной подушке.

Одновременно с работами над гидродинамическим обликом корабля на фирме «Алмаз» разрабатывали энергетическую установку для проекта 1239. В результате анализа многочисленных вариантов была выбрана комбинированная схема с дизельными и газотурбинными двигателями. В итоге корабли проекта «Сивуч» оснащаются сразу шестью двигателями нескольких типов. Для экономичного хода корабль имеет два дизельных двигателя М-511А с максимальной мощностью до 10 тыс. лошадиных сил каждый. Два других дизеля – М-503Б (2х3300 л.с.) – предназначены для нагнетания воздуха под днище корабля во время движения с высокой скоростью. Последняя обеспечивается при помощи двух газотурбинных двигателей М-10, мощностью до 20-23 тыс. л.с. Дизельные двигатели М-511А передают крутящий момент на гребные винты на корме корабля, а моторы М-503Б соединены с нагнетающими турбинами. Газотурбинные двигатели, в свою очередь, приводят в действие по два гребных винта, размещенные на специальных поворотных колонках в кормовой части корабля. При экономичном ходе колонки поднимаются над водой и располагаются в вертикальном положении. В случае перехода на скоростной режим колонки опускаются в воду и запускаются газотурбинные двигатели.

МРК на воздушной подушке «Бора»

Утверждается, что оригинальная система скегов и ограждений в сочетании с архитектурой энергетической установки дает кораблям проекта 1239 возможность осуществлять движение на одном из 36 режимов, условно разделенных на три группы. Это режимы катамарана, и два варианта корабля на воздушной подушке. При помощи только дизелей М-511А «Сивучи» способны двигаться со скоростью до 18-20 узлов. Для разгона до больших скоростей нужно применять нагнетательные дизели и газотурбинные двигатели. При включении всей энергоустановки на полную мощность корабли проекта 1239 могут разгоняться до 55 узлов. При этом, однако, дальность плавания сокращается более чем в три раза по сравнению с экономичным ходом. Интересно, что среди 36 режимов работы двигателей, винтов и скегового корпуса присутствует даже такой, который позволяет кораблю двигаться только при помощи нагнетательных дизелей. При закрытом переднем и открытом заднем ограждении воздушной подушки только за счет истечения нагнетаемого под днище воздуха корабль может двигаться со скоростью до трех узлов, даже против ветра.

Малые ракетные корабли проекта 1239 «Сивуч», несомненно, являются одними из самых интересных и перспективных единиц техники российского военно-морского флота. Благодаря своим высоким ходовым данным, они способны выполнять некоторые действия, недоступные другим кораблям. К примеру, имеются сведения о пробных противоракетных и противоторпедных маневрах. По имеющимся данным, «Сивучи» за счет высокой скорости, при определенном стечении обстоятельств, способны срывать наведение противокорабельных ракет и уходить от торпед.

Однако, несмотря на все преимущества, «Сивучи» и другие корабли скегового типа имеют один большой недостаток. Их слишком мало. Ввиду высоких перспектив кораблей на воздушной подушке скегового типа продолжаются работы по созданию новых проектов такой техники. В настоящее время в ЦМКБ «Алмаз» изучаются возможности создания новых скеговых кораблей различного назначения. К примеру, рассматривается возможность продолжения развития идеологии скоростных ракетных кораблей или размещение на корабле вертолета (вертолетов). Для последнего предлагается убрать из состава двигательно-движительной системы опускаемые колонки и использовать только кормовые гребные винты либо водометные движители, размещенные на скегах.

Еще одной сферой, где могут найти применение корабли на воздушной подушке скегового типа, является высадка десанта. По скеговой схеме можно строить десантные катера и малые десантные корабли. Благодаря своему строению такая техника сможет быстро приближаться к берегу и, при необходимости, осуществлять высадку войск в непосредственной близости от суши. С использованием нагнетательных двигателей такой корабль или катер сможет, подойти к берегу и «сесть» на дно, используя скеги в качестве опор. В таком случае возможны как высадка десанта, так и более эффективное использование вооружений. В теории, корабли скеговой схемы могут быть использованы для выполнения широкого спектра целей. Это и атака кораблей противника ракетным вооружением (проект 1239), и высадка или огневая поддержка десанта, и даже спасение пострадавших при кораблекрушениях или других подобных инцидентах.


В девяностых годах конструкторское бюро «Алмаз», используя наработки по проекту 1239 и сопутствующим исследовательским программам, создало чисто гражданское судно на воздушной подушке скегового типа. Проект RSES-500 представлял собой скоростной паром, предназначенный для работы в грузопассажирских перевозках на Балтийском море или других подобных акваториях. К сожалению, экономические проблемы девяностых годов не позволили довести проект RSES-500 хотя бы до стадии закладки первого опытного судна. Возможно, в ближайшие годы конструкторские работы будут возобновлены и некоторые морские перевозчики купят новый паром.

В настоящее время суда на воздушной подушке скегового типа имеют неплохие перспективы в своем секторе. Ввиду определенных технических ограничений такая техника не может иметь большое водоизмещение, но в «секторе» до тысячи тонн ни один другой класс плавсредств не может конкурировать с ней. Согласно исследованиям и теоретическим выкладкам, судно или корабль с водоизмещением порядка тысячи тонн, с использованием газотурбинных двигателей и многорежимной воздушной подушки скегового типа, способно достичь скорости порядка 100 узлов. Конечно, ценой такой скорости станет огромный расход топлива, но в некоторых областях перевозок и военного дела это можно признать приемлемой платой за высокие характеристики.

Примечательно, что российские ученые и инженеры имеют самый большой в мире опыт создания кораблей скегового типа, а также обладают рядом интересных ноу-хау. В ближайшем будущем эти идеи и решения могут оказаться полезными на коммерческом рынке. Однако пока нет никакой информации о планах отечественных судостроителей по поводу создания коммерческих судов на воздушной подушке скегового типа. Примерно таким же образом обстоит дело и с боевыми кораблями такого класса. Очень не хотелось бы, чтобы имеющиеся наработки по этой тематике оказались забытыми и больше не приносили бы пользу.

По материалам сайтов:
http://flotprom.ru/
http://oborona.ru/
http://flot.sevastopol.info/
http://bora-class.info/
http://almaz-kb.ru/

В двадцатом веке появилось немало принципиально новых транспортных средств. К числу наиболее оригинальных по своей конструкции принадлежат корабли на воздушной подушке, успешно используемые в наши дни военными и спасателями.

НАРУШАЯ ЗАКОН АРХИМЕДА

Несмотря на разницу в размерах, тысячелетиями корабли были схожи между собой в одном: они держатся на воде за счет закона Архимеда, гласящего, что погруженное тело плавает в равновесии, когда его вес равен весу вытесненного им объема жидкости. И греческие триеры, и испанские галеоны, и громадные атомные авианосцы подчиняются этому правилу. И лишь один тип кораблей предпочитает обходной путь - суда на воздушной подушке. Вместо того чтобы по старинке разгонять килем воду, они взмывают над ней, опираясь на слой сжатого воздуха, создаваемый под корпусом с помощью специальных воздухонагнетателей.

Хотя первые подобные корабли появились в двадцатом веке, принцип, позволяющий им парить над водной гладью, был открыт еще в начале восемнадцатого столетия шведским ученым-естествоиспытателем Эммануэлем Сведенборгом. Изучая атмосферное давление, он предположил, что сжатый воздух можно использовать для подъема судна над водой. И даже разработал проект небольшого корабля с механическими лопастями, нагнетающими воздух под днище. Замысел так и не реализовали, поскольку мускульной силы для создания нужного давления явно не хватало, а двигателей человечество еще не знало.

ПЕРВЫЕ ПОПЫТКИ

Тем не менее работа Сведенборга взбудоражила умы изобретателей, долгое время пытавшихся реализовать его задумку. Подобные попытки предпринимались и в России - например, в 1853 году в Петербурге была рассмотрена заявка на патент «трехкильного духоплава». Небольшая экспериментальная лодка должна была приподниматься над водой за счет воздуха, закачанного с помощью системы мехов под днище. Впрочем, несмотря на ряд оригинальных находок, успеха изобретателю добиться не удалось.

Верную дорожку к созданию кораблей на воздушной подушке нащупали только в самом конце XIX - начале XX века. В1897 году американский изобретатель Кутбертсон запатентовал корабль со скегами - бортовыми стенками, которые удерживают нагнетаемый воздух от быстрой утечки, создавая повышенное давление между днищем и водой. В 1909 году шведский инженер Ханс Динесон предложил применять для удержания воздушной подушки резиновые перемычки. Наконец, в 1916 году, в разгар Первой мировой войны, появился работающий корабль, использовавший воздушную подушку.

Речь идет об экспериментальном глиссере конструкции австрийского инженера Дагобера Мюллера фон Томамюля. Его отличительной чертой стал нагнетающий винт, создававший повышенное давление под днищем скоростного катера и, тем самым, облегчавший переход в режим глиссирования. Разработку так и не приняли на вооружение, поскольку ее мореходные качества оставляли желать лучшего, а обстановка на фронтах не давала австрийцам ни малейшего шанса на доработку. И все же на развивший в ходе испытаний скорость в сорок узлов катер обратили внимание. Идеи Томамюля стали основой для появления первых советских скоростных кораблей со скегами.

СОВЕТСКИЙ ПРОРЫВ

В СССР 1920-30-х годов требовался новый, невиданный ранее транспорт, и суда на воздушной подушке подходили под этот образ как нельзя лучше. Честь быть первопроходцем в их создании принадлежит профессору Владимиру Израилевичу Левкову, начавшему работу над своими аппаратами еще в 1925 году. Первые шаги были сделаны собственными силами при поддержке студентов: построена аэродинамическая труба, открыта лаборатория. Вскоре на его разработки обратили внимание власти, стало поступать финансирование, первые заказы. В 1930 году Левкова сделали директором нового авиационного института в Новочеркасске.

Именно здесь был разработан трехместный катер на воздушной подушке «Л-1», испытанный летом 1935 года на Плещеевом озере. Небольшое судно имело три винта, On два из которых нагнетали воздух под корпус, а третий приводил конструкцию в движение.

Успех «Л-1» вызвал живой интерес, и вслед за первой моделью была спроектирована целая линейка экспериментальных аппаратов, в том числе дюралюминиевый «Л-5» водоизмещением 8,6 тонны, который развил скорость в фантастические для тех лет 73 узла. Его даже собирались использовать для спасения дрейфовавших на льдине полярников-папанинцев, и только внезапная поломка помешала реализации этого плана. Зато интерес проявил военно-морской флот, заказав разработку боевых катеров. В самом начале 1940-х годов на вооружение Балтийского флота были приняты четыре машины, вооруженные торпедами и пулеметами.

К сожалению, начавшаяся война заставила отказаться от планов по дальнейшему развитию аппаратов Левкова. Они имели ряд недостатков, требовавших доработки. В условиях критической обстановки на фронтах командование предпочло проверенные типы судов новым. Даже построенные скеговые корабли на воздушной подушке не приняли участия в боевых действиях.

ДАЛЬНЕЙШАЯ СУДЬБА

В послевоенное время в СССР о судах на воздушной подушке на некоторое время забыли - зато ими заинтересовались за рубежом. В середине 1950-х первые действующие экземпляры создал английский изобретатель Кристофер Коккерелл. В отличие от Левкова, он использовал не скеги, а замкнутое кольцевое сопло, которое полностью ограждало воздушную подушку по периметру. Установленные сверху аппарата турбореактивные двигатели позволяли развивать скорость до 120 километров в час.

Еще более революционным стал корабль Латимера-Нидхэма, который придумал использовать гибкое ограждение-юбку, способную одновременно удерживать воздушную подушку и с легкостью преодолевать различные препятствия. Схема оказалось столь удачной, что она до сих пор используется повсеместно. После покупки в 1961 году патента на это изобретение компанией «Уэстлэнд» начался выпуск первых в мире серийных судов на воздушной подушке.

С этого начался золотой век этого типа транспортных средств. Великобритания, США и СССР создают один транспорт за другим. Наиболее впечатляющими снова оказались советские разработки, вершиной которых стал десантный корабль «Зубр» - самое большое судно на воздушной подушке в мире. Его грузовой отсек рассчитан на три танка, десять бронетранспортеров или же до пятисот бойцов морской пехоты в полном вооружении. Плавучесть обеспечивает прямоугольный понтон, составляющий основную часть корпуса и включающий в себя, кроме десантного отделения, каюты, помещения для экипажа, силовые установки. Воздушная подушка создается за счет нагнетания под «юбку» воздуха четырьмя мощными турбинами диаметром в 2,5 метра каждая.

Еще три четырехлопастных винта создают тягу, которая разгоняет судно до 111 километров в час, а способность подплывать почти к любому побережью позволяет «Зубрам» производить стремительные десантные операции. Для самообороны и поддержки высадки морской пехоты корабли снабжены собственным вооружением: две 30-мм автоматические артиллерийские системы, две пусковые установки 140-мм неуправляемых реактивных снарядов и восемь переносных зенитно-ракетных комплексов «Игла». Созданный в 1980-х годах, «Зубр» получил заслуженное признание не только на родине, но и за рубежом, став первым советским кораблем, который закупило для своего флота государство-член НАТО.

И В СНЕГ, И В ЗНОЙ

И все же корабли на воздушной подушке не стал и по-настоящему массовым средством передвижения. Помимо большого перечня достоинств, им свойственен и ряд недостатков. Одним из наиболее критичных является сравнительно низкая мореходность: из-за почти полного отсутствия контакта с водой такие корабли испытывают на себе сильное влияние ветра, их нельзя использовать уже при скорости в 12-15 метров в секунду. Оставляет желать лучшего управляемость и маневренность таких кораблей. Но самый большой недостаток - достаточно высокая стоимость эксплуатации, обоснованная сложностью конструкции и повышенным износом из-за вибрации и огромного числа брызг, поднимаемых в воздух при движении и приводящих к коррозии.

По этим причинам разработка крупных транспортов на воздушной подушке пока приостановлена. Вместо этого делается акцент на маломерных гражданских судах, способных передвигаться по заболоченной местности, небольшим речкам, в том числе горным, там, где нет дорог. Такие транспортные средства достаточно прочно закрепились в парке спасательных служб всего мира.

Возможно Вам будет интересно: