Причина гибели микроорганизмов при воздействии ионизирующего излучения. Внешняя среда микроорганизмов

Ближний ультрафиолет (УФ) - излучение с длиной волны 400 - 320 нм - даже в невысоких дозах оказывает на бактерий определенное действие. Так, при освещении ближним УФ подвижных клеток Е. coli или Salmonella typhimurium сначала наблюдается увеличение частоты кувырканий клеток, т.е. репеллентный эффект, затем кувыркания полностью прекращаются и наступает паралич жгутиков, т.е. свет нарушает механизмы движения и таксиса. При этом хромофором является флавопротеин.

В сублетальных дозах ближний УФ вызывает замедление роста культур, главным образом за счет удлинения лаг-фазы. Скорость деления клеток также несколько снижается, подавляется способность бактерий поддерживать развитие фага и угнетается индукция ферментов. Эти эффекты определяются в основном поглощением УФ-лучей 4-тиоуридином - необычным основанием, присутствующим в 8-й позиции у многих тРНК прокариот (но не у эукариот). Наибольший эффект оказывает свет длиной волны около 340 нм. Возбужденный светом 4-гиоуредин образует сшивки с цитозином, находящимся в 13-м положении в тРНК, что препятствует связыванию тРНК с аминокислотами и приводит к увеличению образования гуанозинтрифосфата на рибосомах и к приостановке синтеза РНК и белка соответственно. У Bacillus subtillis обнаружена и другая чувствительная к ближнему УФ-система, у которой воспринимающим свет хромофором является менахинон.

При относительно высоких дозах облучения ближним УФ наблюдаются мутагенные и летальные эффекты. Нарушение ДНК вызывают не столько сами УФ-лучи, сколько различные другие возбужденные светом молекулы. И в этих эффектах имеет значение поглощение ближнего УФ 4- тиоуредином. Мутагенное и летальное действие ближнего УФ в значительной степени зависит от присутствия кислорода.

Летальный эффект при облучении ближним УФ может быть связан с повреждением не только ДНК, но и мембран, в частности их транспортных систем. Чувствительность к ближнему УФ бактерии может сильно зависеть от стадии роста культуры, что не наблюдается при действии дальнего УФ.

Эффект действия ближнего УФ может быть опосредован фотосенсибилизатором. Так, в присутствии акридина у E.coli ближний УФ вызывает нарушение как ДНК, так и внешней цитоплазматической мембран, в результате чего клетки становятся чувствительными к лизоциму, детергентам, осмотическому шоку.

Ближний УФ может при невысоких дозах облучения вызывать фотопроекцию, т.е. снижать биологический эффект последующего облучения дальним УФ. Представление о механизме этого эффекта противоречивы. При относительно высоких дозах облучения ближним УФ может наблюдаться и противоположный эффект, т.е. усиление действия последующего облучения дальним УФ.

Средний УФ - это излучение с длиной волны 320 - 290 нм, и дальний УФ - с длиной волны 290 - 200 нм. Биологические эффекты действия среднего и дальнего УФ сходны. Как уже упоминалось, при облучении солнечным светом гибель бактерий связана в основном с действием УФ. Нижний предел длины волны света, попадающего на земную поверхность, составляет около 290 нм, в исследованиях же используют источники света с меньшей длиной волны. Считают, что резистентность организма к солнечной радиации, как правило, соответствует его устойчивости к неионизирующему излучению от искусственных источников.

ДНК интенсивно поглощает УФ в области 240 - 300 нм, т.е. в области среднего и дальнего УФ, с пиком поглощения в области 254 нм. Этим объясняется высокая мутагенная и летальная эффективность облучения средним и дальним УФ. Образование пиримидиновых димеров в ДНК является основным механизмом, обусловливающим летальный и мутагенный эффекты. В состав димеров могут входить 2 соседних тиминовых или цитозиновых остатка либо 1 тиминовый и 1 цитозиновый остатки. Под влиянием УФ-облучения происходит также гидроксилирование цитозина и урацила, образование цитозин-тиминовых аддуктов, сшивок ДНК с белком, формирование поперечных сшивок ДНК, разрывы цепей и денатурация ДНК. Такие повреждения возрастают при повышении интенсивности облучения.

Ионизирующее излучение составляет определенный компонент естественной радиации, определяемый нестабильными изотопами, постоянно находящимися в почве и атмосферных осадках. В областях залегания радиоактивных минералов естественный фон радиации повышен. Изотопы могут попадать в живые организмы и тогда они подвергаются внутреннему облучению. Бактерии иногда способны накапливать некоторые элементы в очень больших количествах.

Ионизирующее излучение возникает также под влиянием космических лучей. Космическое пространство служит источником первичных космических лучей, которые дают начало вторичным, воздействующим на живые организмы. Интенсивность такого излучения зависит от географической широты, особенно от высоты над уровнем моря, и приблизительно удваивается каждые 1500 м. В период солнечных вспышек фон космической радиации повышен. Искусственное ионизирующее излучение возникает в результате испытаний ядерного оружия, работы АЭС, применения радиоизотопов в медицинских, научных и других целях. Наличие таких источников - причина того, что микроорганизмы в наши дни подвергаются высоким дозам облучения.

Ионизирующие излучения также вызывают повреждения ДНК, которые принято подразделять на прямые и опосредованные, возникающие в связи с образованием свободных радикалов. Повреждения преимущественно представляют собой одноцепочечные или двухцепочечные разрывы молекулы ДНК.

Радиорезистентность различных бактерий варьирует в очень широких пределах и контролируется многими генами. Сравнительно легко могут быть получены мутанты, более радиорезистентные или радиочувствительные. Радиорезистентность зависит прежде всего от работы различных систем репарации и регуляции. При этом степени устойчивости организма к излучениям различных типов, особенно УФ и ионизирующим излучениям, могут не совпадать. Различные репарационные системы бактерий будут рассмотрены ниже.

Установлена связь радиоустойчивости бактерий с особенностями ее местообитания. Так, микроорганизмы, выделенные из радоновых минеральных источников, оказываются в 3 - 10 раз более резистентными к радиации, чем организмы тех же видов, выделенные из нерадиоактивной воды. В охладительных системах ядерных реакторов, где средняя доза излучения превышает 10 6 ФЭР (физический эквивалент рентгена), обитают разные бактерии, в частности представители рода Pseudomonas. Однако в основном трудно найти разумное объяснение адаптационного значения высокой радиоустойчивости некоторых бактерий. Особенно высока радиоустойчивость некоторых кокков, выделенных из облученных продуктов. В данном случае очевидно, что облучение могло служить фактором отбора, но не фактором, вызвавшим адаптацию. Так, доза УФ, необходимая для инактивации 90% клеток УФ-резистентного штамма Е. coli, составляет около 1000 эрг/мм “ 2 , в то время как для достижения такого же эффекта у Deinococcus radiodurans требуется доза в 10000 - 15000 эрг/мм" 2 или 5 х 10 5 рад в случае радиоактивного облучения. Еще большей устойчивостью к УФ- и у-излучению обладает кокк Deinococcus radiophilus. Как уже упоминалось, уровень радиорезистентности определяется главным образом степенью развитости репарационных систем. Deinococcus radiodurans, видимо, способен репарировать даже двухнитевые разрывы ДНК, летальные для большинства микроорганизмов.

Степень радиоустойчивости некоторых бактерий значительно превышает предельный уровень радиации, с которым организмы могут сталкиваться в природе. Наиболее вероятным объяснением этого несоответствия может быть предположение о том, что радиоустойчивость - лишь одно из многообразных проявлений действия систем широкого назначения. Правильнее было бы говорить о степени устойчивости бактерий к определенным нарушениям в структуре их клеток, чем об устойчивости к воздействию определенных факторов среды, поскольку одинаковые нарушения могут быть вызваны разными причинами. Это относится прежде всего к системам репарации повреждений ДНК.

Многие наслышаны о микроскопических беспозвоночных тихоходках (близкий к членистоногим тип Tardigrada ), внешне напоминающих нечто среднее между надувным матрасом и плюшевым мишкой, которые и в воде не тонут, и космического излучения не боятся, и после криозаморозки оживают. Deinococcus radiodurans — «тихоходки» среди бактерий.

Хотя одноклеточные дейнококки сильно отличаются от своего эукариотического (имеющего ядра в клетках) многоклеточного собрата, они вовсе не уступают ему в живучести и могут выдерживать

Дозу радиации до 10 тыс. Грей (для человека доза 5 Грей смертельна), высушивание и химическое воздействие.

«О молекулярных механизмах регуляции экспрессии генов у этой бактерии известно относительно мало, — рассказывает Андрей Кульбачинский, профессор РАН, заведующий лабораторией в Институте молекулярной генетики РАН. — Мы исследовали уникальные белки этой бактерии, которые регулируют активность РНК-полимеразы — главного фермента, ответственного за считывание генетической информации с матрицы ДНК. Было показано, что эти белки (Gfh-факторы) способны останавливать РНК-полимеразу в определенных участках генома, что может играть важную роль в изменении активности генов и «починке» ДНК, поврежденной радиацией. Похожие механизмы регуляции активности РНК-полимеразы могут действовать и у многоклеточных организмов». Работа поддержана грантом Российского научного фонда (РНФ) и была опубликована в журнале PNAS .

Как радиация вредит клетке

Открыты Deinococcus radiodurans были случайно: в 1956 году их нашли «в добром здравии» в банке с мясными консервами, которые пытались простерилизовать с помощью радиации.

В норме любое ионизирующее излучение — поток заряженных или нейтральных частиц или квантов, который способен превращать нейтральные атомы в заряженные ионы, возбуждая их, — разрушает гармонию слаженного механизма химических превращений, которые происходят в живой клетке.

Непреодолимые химические силы начинают тянуть ионизированные атомы к «соседям», к которым в невозбужденном состоянии они были абсолютно «равнодушны». Даже безопасные и вездесущие нейтральные молекулы воды могут превратиться в пероксид и затем в супероксид — опасные свободные радикалы, один из основных источников повреждений биологических молекул в клетке. Действие свободных радикалов называют оксидативным стрессом, так как оно связано с окислением биомолекул.

Результат — случайные химические связи, молекулярная неразбериха и «разрушение традиционных ценностей». Внутри живой клетки главным «хранителем традиций» является ДНК, в которой в закодированном виде содержится инструкция по сборке всех ее белков, важнейших участников основных клеточных процессов. Поэтому радиация (как и многие токсичные вещества), нарушающая последовательность ДНК, несет для клеток смертельную опасность: некоторые мутации могут случайно оказаться полезными, но, если не глядя переставлять детали в исправно работающем сложном механизме, вероятность сломать его несоизмеримо выше, чем вероятность изобрести что-то хорошее.

Кроме того, в ДНК могут образовываться разрывы, мешающие считыванию кода. «Ломаются» и сами белки — особенно часто повреждается SH-группы в цистеине (одной из аминокислот — «кирпичиков», из которых строится молекула белка), что нарушает их функции.

Восстать из радиоактивного пепла

Как же бактерии выживают в таких условиях? Повреждения ДНК живых организмов не всегда приводят к плачевным последствиям. В клетках есть специальные механизмы репарации — «ремонта» драгоценной молекулы, например одну из ее цепей можно достроить, «подглядывая» во вторую на том же участке и подбирая нуклеотиды («буквы» генетического кода) по принципу комплементарности, то есть подставляя на место отсутствующего фрагмента парные ему «буквы».

ДНК Deinococcus radiodurans упакована в две кольцевые хромосомы и две плазмиды — сравнительно маленькие дополнительные кольцевые молекулы ДНК. Каждая такая молекула представлена в количестве от четырех до десяти копий в любой момент жизни клетки, поэтому запасных вариантов для «сверки» у нее всегда много (а не всего две, как у нас в соматических клетках). Более того, оказалось, что основная опасность для жизни дейнококка — это не повреждение ДНК (которую можно починить, используя дополнительные копии), а как раз разрушение структуры белков, занимающихся ее ремонтом.

Для «починки» разрывов в ДНК бактерия имеет дополнительные белки: одни связываются с одиночной цепью ДНК при разрыве, чтобы защитить ее от дальнейших повреждений, другие, работая как «клеточная полиция», ловят «возмутителей спокойствия», свободные радикалы, и расщепляют их.

Кроме того, у всех бактерий есть дополнительные «хитрости», позволяющие вносить корректуры прямо в ходе транскрипции — считывания «ДНК-текстов». Однако есть ли какие-то особенности этого процесса у Deinococcus radiodurans, до последнего времени было неизвестно.

Один из механизмов, который основан на работе белков Gfh и может играть роль в процессах «ремонта» ДНК и защите клеток от радиации, и был исследован российскими учеными из . «Двое из трех соавторов, включая меня самого, работают также на кафедре молекулярной биологии Биологического факультета , — сообщает Андрей Кульбачинский. — Исследования были выполнены исключительно за счет гранта РНФ, темой которого является изучение механизмов регуляции транскрипции и их возможной роли в радиоустойчивости Deinococcus radiodurans».

Хитрости редактуры

РНК-полимераза считывает информацию с ДНК, переводя ее в РНК — более короткую молекулу, которая в зависимости от последовательности будет служить матрицей для синтеза белка или выполнять еще множество функций в клетке. РНК-полимераза является также корректором или даже «главным редактором», исправляющим ошибки этого «перевода» (транскрипции).

Ведущий автор работы рассказал, какую роль в этом процессе могут играть изученные командой российских исследователей белки Gfh-факторы. Эти белки были обнаружены только у экстремофильных (живущих в неблагоприятных, с нашей точки зрения, условиях — при высоких температурах, давлении и др.) бактерий из группы Deinococcus-Thermus, которые очень устойчивы к нагреванию и другим стрессовым воздействиям.

«РНК-полимераза — один из самых консервативных ферментов в эволюции, и структура его во многом похожа и у бактерий, и у человека. В то же время различные организмы используют самые разнообразные способы регуляции работы этого фермента.

Одной из наиболее интересных групп регуляторных факторов являются белки, которые способны напрямую воздействовать на активный центр РНК-полимеразы. Для этого они связываются в специальном канале, который соединяет поверхность РНК-полимеразы с активным центром (так называемый вторичный канал — в отличие от первичного, в котором происходит связывание ДНК и РНК)», — рассказывает Андрей Кульбачинский.

По словам ученого, у большинства бактерий встречаются Gre-белки, относящиеся к этой группе. Они могут переключать активность РНК-полимеразы, в результате чего уже «прочитанный» фрагмент (транскрипт) расщепляется. Это свойство позволяет исправлять уже сделанные в ходе транскрипции ошибки. После такой «редактуры» РНК может синтезироваться дальше. У эукариот (в том числе у человека) тоже существуют аналоги таких белков, только эволюционное происхождение они имеют иное. Это говорит об исключительной важности такого процесса.

«Исследованные нами факторы — Gfh-белки — являются родственниками (гомологами) Gre-факторов. Однако вместо того, чтобы переключать активности РНК-полимеразы, они ее ингибируют! Причем у той бактерии, которую мы исследуем (Deinococcus radiodurans), это происходит только в определенных участках генома и только в присутствии ионов марганца, которые, как уже довольно давно известно, играют роль в защите клеток дейнококка от окислительного стресса», — сообщает ученый.

Перспективы: помогут ли Gfh-факторы «бороться с бактериями их же оружием»?

Исследователи сделали предположение, что Gfh-белки могут «фиксировать» РНК-полимеразу в определенном структурном состоянии, останавливая ее ход по молекуле ДНК. Такую «замершую над ошибкой» РНК-полимеразу узнают другие белки — факторы репарации («починки») и репликации (воспроизведения) ДНК. Дальнейшей задачей ученых станет исследование роли Gfh-белков в защите дейнококков от радиации.

«Наша работа носит прежде всего фундаментальный характер: впервые обнаружено, что регуляторные факторы способны значительно усиливать паузы и терминацию (остановку. — «Газета.Ru») транскрипции, связываясь во вторичном канале РНК-полимеразы. Так как строение РНК-полимеразы очень консервативно, весьма вероятно, что данный способ регуляции может действовать у самых разных организмов (например, и у нас с вами), только с участием других регуляторных факторов», — комментирует Андрей Кульбачинский.

Автор добавляет, что возможно и практическое применение результатов исследования. Так как Gfh-факторы фиксируют РНК-полимеразу и останавливают транскрипцию, то, изучив их, можно создать или найти другие молекулы, способные помешать бактериям переписывать информацию с ДНК на РНК и синтезировать белки. РНК-полимераза медленно изменяется с течением времени, поэтому у бактерий она очень похожа и ее удобно использовать как мишень для антибактериальных препаратов. Так, антибиотик рифампицин , используемый в борьбе с палочкой Коха, вызывающей туберкулез, подавляет именно РНК-полимеразу бактерий (правда, со временем они вырабатывают к нему устойчивость, что делает получение новых антибиотиков важнейшей проблемой ближайшего будущего).

Биологи называют бактерии эволюционным рецептом успеха - настолько они устойчивы к любым условиям внешней среды. Некоторые из них прекрасно себя чувствуют даже при смертельных дозах радиации.

Микробиолог Джон Батиста из Университета Луизианы повидал немало. Однако о своей первой встрече с микробом, в шутку прозванным «Конан-супербактерия», он сказал: «Честное слово, мне было нелегко поверить в реальность существования подобного организма».

В начале 1960-х годов Томас Брок обнаружил в Йеллоустонском национальном парке бактерии, выдерживавшие температуры, близкие к точке кипения. После этого микробиологи стали находить всё новые виды микробов экстремалов. Однако Конан превзошел всех: самый устойчивый микроорганизм, он выдерживает трескучий мороз, испепеляющую жару, кислотные ванны и яды. Но поразительней всего была его реакция на высокие дозы радиоактивного облучения. Даже 1500-кратное превышение дозы, смертельной для прочих организмов, не приносило бактерии никакого вреда.

Впервые Конан был обнаружен в 1950-х годах в испорченных мясных консервах, предназначавшихся для армии. Для защиты от заражения бактериями консервы в США обычно стерилизуют с помощью радиоактивного излучения. Тем сильнее удивились ученые, когда увидели в банках розовую плесень с запахом гнилой капусты, явно бактериального происхождения. Они были озадачены. Ведь обычно радиация вызывает в живых организмах глубокие повреждения генетического материала. Если количество таких повреждений превысит некий критический уровень, микроорганизм погибает. Но для Конана закон не писан. Какие же механизмы спасают невзрачную кроху от смерти в любой ситуации?

Поставленные в тупик микробиологи занялись разгадкой тайны Конана. Они исследовали его генетический материал до и после воздействия радиации и проанализировали обменные процессы. К их удивлению, результаты свидетельствовали, что Конан тоже сильно страдает от радиации, но при этом умеет преодолевать ее гибельные последствия.

Если некоторые яды или ионизирующее излучение наносят сравнительно незначительный вред лишь одной из двух нитей ДНК организма, то радиоактивное излучение вызывает повреждение обеих нитей ДНК, а их восстановление часто бывает непосильным для организма. Так, для гибели живущей в кишечнике человека кишечной палочки достаточно двух-трех таких повреждений ДНК.

Конан же, напротив, быстро восстанавливал две сотни подобных «поломок». Дело в том, что в процессе эволюции у него выработались эффективные механизмы восстановления генных повреждений - в том числе появился особый фермент, который отыскивает подходящие «запчасти» в наследственном материале, копирует их и вставляет в поврежденные участки.

Восстановлению ДНК у Конана способствует еще одно обстоятельство: геном Конана состоит из четырех кольцевых молекул ДНК, причем в каждой клетке геном присутствует не в одной, как у большинства бактерий, а в нескольких копиях. Именно благодаря этим копиям и происходит восстановление поврежденных участков. Поскольку клетка наиболее уязвима для радиации в момент деления, когда кольцевая молекула ДНК должна разомкнуться, Конан выработал еще один способ защиты: три молекулы бактерия оставляет свернутыми в кольцо, а четвертую использует для нужд воспроизведения. Если под воздействием радиации эта хромосома получает повреждения, запасные хромосомы служат матрицами, с которых организм копирует правильные последовательности генов.

В 2007 г. микробиолог Майкл Дж. Дейли обнаружил еще одну причину гиперстойкости Конана: эта бактерия отличается невероятно высокой внутриклеточной концентрацией марганца -элемента, который также способствует восстановлению повреждений ДНК.

И все же, несмотря на сделанные открытия, загадка сверхустойчивости Конана к радиации до конца еще не разгадана. Исследования идут полным ходом: ученые надеются эффективно использовать Конана для очистки почв, загрязненных радиацией.

Влияние физических факторов .

Влияние температуры. Различные группы микроорганизмов развиваются при определенных диапазонах температур. Бактерии, растущие при низкой температуре, называют психрофилами, при средней (около 37 °С) - мезофилами, при высокой - термофилами.

К психрофильным микроорганизмам относится большая группа сапрофитов - обитателей почвы, морей, пресных водоемов и сточных вод (железобактерии, псевдомонады, светящиеся бактерии, бациллы). Некоторые из них могут вызывать порчу продуктов питания на холоде. Способностью расти при низких температурах обладают и некоторые патогенные бактерии (возбудитель псевдотуберкулеза размножается при температуре 4 °С). В зависимости от температуры культивирования свойства бактерий меняются. Интервал температур, при котором возможен рост психрофильных бактерий, колеблется от -10 до 40 °С, а температурный оптимум - от 15 до 40 °С, приближаясь к температурному оптимуму мезофильных бактерий.

Мезофилы включают основную группу патогенных и условно-патогенных бактерий. Они растут в диапазоне температур 10- 47 °С; оптимум роста для большинства из них 37 °С.

При более высоких температурах (от 40 до 90 °С) развиваются термофильные бактерии. На дне океана в горячих сульфидных водах живут бактерии, развивающиеся при температуре 250-300 °С и давлении 262 атм.

Термофилы обитают в горячих источниках, участвуют в процессах самонагревания навоза, зерна, сена. Наличие большого количества термофилов в почве свидетельствует о ее загрязненности навозом и компостом. Поскольку навоз наиболее богат термофилами, их рассматривают как показатель загрязненности почвы.

Хорошо выдерживают микроорганизмы действие низких температур. Поэтому их можно долго хранить в замороженном состоянии, в том числе при температуре жидкого газа (-173 °С).

Высушивание . Обезвоживание вызывает нарушение функций большинства микроорганизмов. Наиболее чувствительны к высушиванию патогенные микроорганизмы (возбудители гонореи, менингита, холеры, брюшного тифа, дизентерии и др.). Более устойчивыми являются микроорганизмы, защищенные слизью мокроты.

Высушивание под вакуумом из замороженного состояния - лиофилизацию - используют для продления жизнеспособности, консервирования микроорганизмов. Лиофилизированные культуры микроорганизмов и иммунобиологические препараты длительно (в течение нескольких лет) сохраняются, не изменяя своих первоначальных свойств.

Действие излучения . Неионизирующее излучение - ультрафиолетовые и инфракрасные лучи солнечного света, а также ионизирующее излучение - гамма-излучение радиоактивных веществ и электроны высоких энергий губительно действуют на микроорганизмы через короткий промежуток времени. УФ-лучи применяют для обеззараживания воздуха и различных предметов в больницах, родильных домах, микробиологических лабораториях. С этой целью используют бактерицидные лампы УФ-излучения с длиной волны 200-450 нм.

Ионизирующее излучение применяют для стерилизации одноразовой пластиковой микробиологической посуды, питательных сред, перевязочных материалов, лекарственных препаратов и др. Однако имеются бактерии, устойчивые к действию ионизирующих излучений, например Micrococcus radiodurans была выделена из ядерного реактора.

Действие химических веществ . Химические вещества могут оказывать различное действие на микроорганизмы: служить источниками питания; не оказывать какого-либо влияния; стимулировать или подавлять рост. Химические вещества, уничтожающие микроорганизмы в окружающей среде, называются дезинфицирующими. Антимикробные химические вещества могут обладать бактерицидным, вирулицидным, фунгицидным действием и т.д.

Химические вещества, используемые для дезинфекции, относятся к различным группам, среди которых наиболее широко представлены вещества, относящиеся к хлор-, йод- и бромсодержащим соединениям и окислителям.

Антимикробным действием обладают также кислоты и их соли (оксолиновая, салициловая, борная); щелочи (аммиак и его соли).

Стерилизация – предполагает полную инактивацию микробов в объектах, подвергшихся обработке.

Дезинфекция - процедура, предусматривающая обработку загрязненного микробами предмета с целью их уничтожения до такой степени, чтобы они не смогли вызвать инфекцию при использовании данного предмета. Как правило, при дезинфекции погибает большая часть микробов (в том числе все патогенные), однако споры и некоторые резистентные вирусы могут остаться в жизнеспособном состоянии.

Асептика – комплекс мер, направленных на предупреждение попадания возбудителя инфекции в рану, органы больного при операциях, лечебных и диагностических процедурах. Методы асептики применяют для борьбы с экзогенной инфекцией, источниками которой являются больные и бактерионосители.

Антисептика – совокупность мер, направленных на уничтожение микробов в ране, патологическом очаге или организме в целом, на предупреждение или ликвидацию воспалительного процесса.

    Дисбиозы. Препараты для восстановления микробиоты. Состояние эубиоза - динамического равновесия нормальной микрофлоры и организма человека - может нарушаться под влиянием факторов окружающей среды, стрессовых воздействий, широкого и бесконтрольного применения антимикробных препаратов, лучевой терапии и химиотерапии, нерационального питания, оперативных вмешательств и т. д. В результате нарушается колонизационная резистентность. Аномально размножившиеся транзиторные микроорганизмы продуцируют токсичные продукты метаболизма - индол, скатол, аммиак, сероводород.

Состояния, развивающиеся в результате утраты нормальных функций микрофлоры, называются дисбактериозом и дисбиозом .

При дисбактериозе происходят стойкие количественные и качественные изменения бактерий, входящих в состав нормальной микрофлоры. При дисбиозе изменения происходят и среди других групп микроорганизмов (виру­сов, грибов и др.). Дисбиоз и дисбактериоз могут приводить к эндогенным инфекция­м.

Дисбиозы классифицируют по этиологии (грибковый, стафилококковый, протейный и др.) и по локализации (дисбиоз рта, кишки, влагалища и т. д.). Изменения в составе и функциях нормальной микрофлоры сопровождаются различными нарушениями: разви­тием инфекций, диарей, запоров, синдрома мальабсорбции, гастритов, колитов, язвенной болезни, злокачественных новообразований, аллергий, мочекаменной болезни, гипо- и гиперхолестеринемии, гипо- и гипертензии, кариеса, артрита, поражений печени и др.

Нарушения нормальной микрофлоры человека определяются следующим образом:

1. Выявление видового и количественного состава представителей микробиоценоза определенного биотопа (кишки, рта, влагалища, кожи и т. д.) - путем высева из разведений исследуемого материала или путем отпечатков, смыва на соответствующие питательные среды (среда Блаурокка - для бифидобактерий; среда МРС-2 - для лактобактерий; анаэробный кровяной агар - для бактероидов; среда Левина или Эндо - для энтеробактерий; желчно-кровяной агар - для энтерококков; кровяной агар - для стрептококков и гемофилов; мясопептонный агар с фурагином - для синегнойной палочки, среда Сабуро - для грибов и др.).

2. Определение в исследуемом материале микробных метаболитов - маркеров дисбиоза (жирных кислот, гидроксижирных кислот, жирнокислотных альдегидов, ферментов и др.). Например, обнаружение в фекалиях бета-аспартилглицина и бета-аспартиллизина свидетельствует о нарушении кишечного микробиоценоза, так как в норме эти дипептиды метаболизируются кишечной анаэробной микрофлорой.

Для восстановления нормальной микрофлоры: а) проводят селективную деконтаминацию; б) назначают препараты пробиотиков (эубиотиков), полученные из лиофильно высушенных живых бактерий - представителей нормальной микрофлоры кишечника - бифидобактерий (бифидумбактерин), кишечной палочки (колибактерин), лактобактерий (лактобактерин) и др.

Пробиотики - препараты, оказывающие при приемеper os нормализирующее действие на организм человека и его микрофлору.

Пребиотики – различные вещества, которые служат для питания представителей норм. Микробиоты и и улучшения моторики кишечника. Эубиотики – культуры м/о, относяиеся к представителям нормальной микробиоты кишечника. Например – лактобактерин, витофлор, линекс.

    Иммерсионный микроскоп. Иммерсионная микроскопия (отлат. immersio - погружение) - методмикроскопического исследования малых объектов с помощью погруженияобъектива светового микроскопа в среду с высокимкоэффициентом преломления , расположенную междумикроскопическим препаратом и объективом.

    Для проведения исследований используют специальные иммерсионные объективы (объективы для масляной иммерсии имеют чёрную полосу на оправе, вблизи от фронтальной линзы; объективы для водной иммерсии - белую полосу ).

Жидкостная иммерсия

Для иммерсионной микроскопии применялись различные жидкости. Наибольшее распространение нашли кедровое масло (показатель преломления n=1,515), глицерин (n=1,4739) и вода (дистиллированная , n=1,3329). Физиологический раствор имеет n=1,3346.

Водная иммерсия. На практике «водная иммерсия» широко применялась ещё до изобретения самого понятия иммерсия , когда объектив микроскопа , для наблюдения за обитателями прудов или луж, полностью погружали в воду. Это позволяет увеличить разрешающую способность объектива и микроскопической системы в целом.

Для исследований в световой микроскопии широко применяются специальные объективы для водной иммерсии , имеющие повышенную числовую апертуру , за счёт того, что показатель преломления воды выше, чем у воздуха.

Масляная иммерсия. Традиционно в качестве среды для масляной иммерсии применяется кедровое масло. Однако оно имеет существенный недостаток: по мере постепенного окисления на воздухе, оно густеет, желтеет и постепенно превращается в слишком вязкую тёмную жидкость.

11.История микробиологии. Этапы. Задачи. Историю развития микробиологии можно разделить на пять этапов: эвристический, морфологический, физиологический, иммунологический и молекулярно-генетический.

Пастер сделал ряд выдающихся открытий. За короткий период с 1857 по 1885 г. он доказал, что брожение (молочнокислое, спиртовое, уксуснокислое) не является химическим процессом, а его вызывают микроорганизмы; опроверг теорию самозарождения; открыл явление анаэробиоза, т.е. возможность жизни микроорганизмов в отсутствие кислорода; заложил основы дезинфекции, асептики и антисептики; открыл способ предохранения от инфекционных болезней с помощью вакцинации.

Многие открытия Л. Пастера принесли человечеству огромную практическую пользу. Путем прогревания (пастеризации) были побеждены болезни пива и вина, молочнокислых продук­тов, вызываемые микроорганизмами; для предупреждения гнойных осложнений ран введена антисептика; на основе принципов Л. Пастера разработаны многие вакцины для борьбы с инфекционными болезнями.

Однако значение трудов Л. Пастера выходит далеко за рамки только этих практических достижений. Л. Пастер вывел микробиологию и иммунологию на принципиально новые позиции, показал роль микроорганизмов в жизни людей, экономике, промышленности, инфекционной патологии, заложил принципы, по которым развиваются микробиология и иммунология и в наше время.

Л. Пастер был, кроме того, выдающимся учителем и организатором науки.

Работы Л. Пастера по вакцинации открыли новый этап в развитии микробиологии, по праву получивший название иммунологического.

Принцип аттенуации (ослабления) микроорганизмов с помощью пассажей через восприимчивое животное или при выдерживании микроорганизмов в неблагоприятных условиях (температура, высушивание) позволил Л. Пастеру получить вакцины против бешенства, сибирской язвы, куриной холеры; этот принцип до настоящего времени используется при приготовлении вакцин. Следовательно, Л. Пастер является основоположником научной иммунологии, хотя и до него был известен метод предупреждения оспы путем заражения людей коровьей оспой, разработанный английским врачом Э. Дженнером. Однако этот метод не был распространен на профилактику других болезней.

Роберт Кох . Физиологический период в развитии микробиологии связан также с именем немецкого ученого Роберта Коха, которому при­надлежит разработка методов получения чистых культур бактерий, окраски бактерий при микроскопии, микрофотографии. Известна также сформулированная Р. Кохом триада Коха, которой до сих пор пользуются при установлении возбудителя болезни.

Задачи. - изучение биологических свойств болезнетворных организмов - разработка методов диагностики вызываемых видов заболеваний - разработка методов борьбы болезнетворными м/о - создание методов стимуляции м/о, полезных для человека

Бактериальная клетка состоит из клеточной стенки, цитоплазматической мембраны, цитоплазмы с включениями и ядра, называемого нуклеоидом. Имеются дополнительные структуры: капсула, микрокапсула, слизь, жгутики, пили. Некоторые бактерии в неблагоприятных условиях способны образовывать споры.

Клеточная стенка . В клеточной стенке грамположительных бактерий содержится небольшое количество полисахаридов, липидов, белков. Основным компонентом толстой клеточной стенки этих бактерий является многослойный пептидогликан (муреин, мукопептид), составляющий 40-90 % массы клеточной стенки. С пептидогликаном клеточной стенки грамположительных бактерий ковалентно связаны тейхоевые кислоты (от греч. teichos - стенка).

В состав клеточной стенки грамотрицательных бактерий входит наружная мембрана, связанная посредством липопротеина с подлежащим слоем пептидогликана. На ультратонких срезах бактерий наружная мембрана имеет вид волнообразной трехслойной структуры, сходной с внутренней мембраной, которую называют цитоплазматической. Основным компонентом этих мембран является бимолекулярный (двойной) слой липидов. Внутренний слой наружной мембраны представлен фосфолипидами, а в наружном слое расположен липополисахарид.

Функции клеточной стенки :

    Обусловливает форму клетки.

    Защищает клетку от механических повреждений извне и выдерживает значительное внутреннее давление.

    Обладает свойством полупроницаемости, поэтому через нее избирательно проникают из среды питательные вещества.

    Несет на своей поверхности рецепторы для бактериофагов и различных химических веществ.

Метод выявления клеточной стенки - электронная микроскопия, плазмолиз.

L-формы бактерий, их медицинское значение L-формы - это бактерии, полностью или частично лишенные клеточной стенки (протопласт +/- остаток клеточной стенки), поэтому имеют своеобразную морфологию в виде крупных и мелких сферических клеток. Способны к размножению.

14.Методы культивирования вирусов. Вирусологический метод. Для культивирования вирусов используют культуры клеток, куриные эмбрионы и чувствительных лабораторных животных. Эти же методы используют и для культивирования риккетсий и хламидий - облигатных внутриклеточных бактерий, которые не растут на искусственных питательных средах.

Культуры клеток. Культуры клеток готовят из тканей животных или человека. Культуры подразделяют на первичные (неперевиваемые), полуперевиваемые и перевиваемые.

Приготовление первичной культуры клеток складывается из нескольких последовательных этапов: измельчения ткани, разъединения клеток путем трипсинизации, отмывания полученной однородной суспензии изолированных клеток от трипсина с последующим суспендированием клеток в питательной среде, обеспечивающей их рост, например в среде 199 с добавлением телячьей сыворотки крови.

Перевиваемые культуры в отличие от первичных адаптированы к условиям, обеспечивающим им постоянное существование in vitro, и сохраняются на протяжении нескольких десятков пассажей.

Перевиваемые однослойные культуры клеток приготовляют из злокачественных и нормальных линий клеток, обладающих способностью длительно размножаться in vitro в определенных условиях. К ним относятся злокачественные клетки HeLa, первоначально выделенные из карциномы шейки матки, Нер-3 (из лимфоидной карциномы), а также нормальные клетки амниона человека, почек обезьяны и др.

К полуперевиваемым культурам относятся диплоидные клетки человека. Они представляют собой клеточную систему, сохраняющую в процессе 50 пассажей (до года) диплоидный набор хромосом, типичный для соматических клеток используемой ткани. Диплоидные клетки человека не претерпевают злокачественного перерождения и этим выгодно отличаются от опухолевых.

О размножении (репродукции) вирусов в культуре клеток судят по цитопатическому действию (ЦПД), которое может быть обнаружено микроскопически и характеризуется морфологическими изменениями клеток.

Характер ЦПД вирусов используют как для их обнаружения (индикации), так и для ориентировочной идентификации, т. е. определения их видовой принадлежности.

Один из методов индикации вирусов основан на способности поверхности клеток, в которых они репродуцируются, адсорбировать эритроциты - реакция гемадсорбции. Для ее постановки в культуру клеток, зараженных вирусами, добавляют взвесь эритроцитов и после некоторого времени контакта клетки промывают изотоническим раствором хлорида натрия. На поверхности пораженных вирусами клеток остаются прилипшие эритроциты.

Другой метод - реакция гемагглютинации (РГ). Применяется для обнаружения вирусов в культуральной жидкости культуры клеток либо хорионаллантоисной или амниотической жидкости куриного эмбриона.

Количество вирусных частиц определяют методом титрования по ЦПД в культуре клеток . Для этого клетки культуры заражают десятикратным разведением вируса. После 6-7-дневной инкубации их просматривают на наличие ЦПД. За титр вируса принимают наибольшее разведение, которое вызывает ЦПД в 50 % зараженных культур. Титр вируса выражают количеством цитопатических доз.

Более точным количественным методом учета отдельных вирусных частиц является метод бляшек .

Некоторые вирусы можно обнаружить и идентифицировать по включениям , которые они образуют в ядре или цитоплазме зараженных клеток.

Куриные эмбрионы. Куриные эмбрионы по сравнению с культурами клеток значительно реже бывают контаминированы вирусами и микоплазмами, а также обладают сравнительно высокой жизнеспособностью и устойчивостью к различным воздействиям.

Для получения чистых культур риккетсий, хламидий и ряда вирусов в диагностических целях, а также для приготовления разнообразных препаратов (вакцины, диагностикумы) используют 8-12-дневные куриные эмбрионы. О размножении упомянутых микроорганизмов судят по морфологическим изменениям, выявляемым после вскрытия эмбриона на его оболочках.

О репродукции некоторых вирусов, например гриппа, оспы, можно судить по реакции гемагглютинации (РГА) с куриными или другими эритроцитами.

К недостаткам данного метода относятся невозможность обнаружения исследуемого микроорганизма без предварительного вскрытия эмбриона, а также наличие в нем большого количества белков и других соединений, затрудняющих последующую очистку риккетсий или вирусов при изготовлении различных препаратов.

Лабораторные животные. Видовая чувствительность животных к определенному вирусу и их возраст определяют репродуктивную способность вирусов. Во многих случаях только новорожденные животные чувствительны к тому или иному вирусу (например, мыши-сосунки - к вирусам Коксаки).

Преимущество данного метода перед другими состоит в возможности выделения тех вирусов, которые плохо репродуцируются в культуре или эмбрионе. К его недостаткам относятся контаминация организма подопытных животных посторонними вирусами и микоплазмами, а также необходимость последующего заражения культуры клеток для получения чистой линии данного вируса, что удлиняет сроки исследования. Вирусологический метод включает культивирование вирусов, их индикацию и идентификацию. Материалами для вирусологического исследования могут быть кровь, различные секреты и экскреты, биоптаты органов и тканей человека. Исследование крови часто проводят в целях диагностики арбовирусных заболеваний. В слюне могут быть обнаружены вирусы бешенства, эпидемического паротита, простого герпеса. Носоглоточные смывы служат для выделения возбудителя гриппа, кори, риновирусов, респираторно-синцитиального вируса, аденовирусов. В смывах с конъюнктивы обнаруживают аденовирусы. Из фекалий выделяют различные энтеровирусы, адено-, рео- и ротавирусы. Для выделения вирусов используют культуры клеток, куриные эмбрионы, иногда лабораторных животных. Источник получения клеток - ткани, извлечённые у человека при операции, органы эмбрионов, животных и птиц. Используют нормальные или злокачественно перерождённые ткани: эпителиальные, фибробластического типа и смешанные. Вирусы человека лучше размножаются в культурах клеток человека или почечных клеток обезьян. Большинство патогенных вирусов отличает наличие тканевой и типовой специфичности. Например, полиовирус репродуцируется только в клетках приматов, что определяет необходимость подбора соответствующей культуры. Для выделения неизвестного возбудителя целесообразно одномоментное заражение 3-4 культур клеток, так как одна из них может оказаться чувствительной. 15. Методы микроскопии (люминесцентная, темнопольная, фазово-контрастная, электронная).

Люминесцентная (или флюоресцентная) микроскопия. Основана на явлении фотолюминесценции.

Люминесценция - свечение веществ, возникающее после воздействия на них каких-либо источников энергии: световых, электронных лучей, ионизирующего излучения. Фотолюминесценция - люминесценция объекта под влиянием света. Если освещать люминесцирующий объект синим светом, то он испускает лучи красного, оранжевого, желтого или зеленого цвета. В результате возникает цветное изображение объекта. Люминесцентный метод микроскопии занимает важное место в исследовании микроорганизмов. Люминесценцией (или флюоресценцией) называют излучение клеткой света за счет поглощенной энергии. Только немногие бактерии (люминесцирующие) способны светиться собственным светом в результате интенсивных процессов окисления, протекающих у них со значительным выделением энергии.

Большинство микроорганизмов приобретает способность люминесцировать, или флюоресцировать, при освещении их ультрафиолетовыми лучами после предварительной окраски специальными красителями - флюорохромами. Поглощая короткие ультрафиолетовые волны, объект излучает более длинные волны видимой части спектра. Вследствие этого разрешающая способность микроскопа повышается. Это дает возможность исследовать более мелкие частицы. Чаще используют красители- флюорохромы: акридин оранжевый, аурамин, корифосфин, флюоресцеин в виде очень слабых водных растворов.

При окраске корифосфином коринебактерии дифтерии дают желто-зеленое свечение в ультрафиолетовом свете, микобактерии туберкулеза при окраске аурамин-родамином - золотисто-оранжевое. Для успешной микроскопии необходим яркий источник света, в качестве которого используют ртутно-кварцевую лампу высокого давления. Между источником света и зеркалом помещают сине-фиолетовый светофильтр, который пропускает только короткие и средние волны ультрафиолетового света. Попав на объектив, эти волны возбуждают в нем люминесценцию. Чтобы увидеть ее, на окуляр микроскопа надевают желтый фильтр, который пропускает длинноволновый свет флюоресценции, возникающий при прохождении лучей через объект. Короткие волны, не поглощенные исследуемым объектом, убираются, отсекаются этим фильтром.

Существуют специальные люминесцирующие микроскопы МЛ-1, МЛ-2, MЛ-3, а также простые устройства: комплект ОИ-17 (опакиллюминатор), ОИ-18 (осветительное устройство с ртутно-кварцевой лампой СВД-120А), дающие возможность применять для люминесцентной микроскопии обычный биологический микроскоп.

Темнопольная микроскопия. Микроскопия в темном поле зрения основана на явлении дифракции света при сильном боковом освещении взвешенных в жидкости мельчайших частиц (эффект Тиндаля). Эффект достигается с помощью параболоид- или кардиоидконденсора, которые заменяют обычный конденсор в биологическом микроскопе. Исследование микроорганизмов в темном поле (темнопольная микроскопия) основано на явлениях рассеяния света при сильном боковом освещении взвешенных в жидкости частиц. Микроскопия в темном поле зрения позволяет увидеть более мелкие частицы, чем в световом микроскопе. Она осуществляется с помощью обычного светового микроскопа, снабженного специальными конденсорами (параболоид- или кардиоид-конденсор), который создает полый конус света. Вершина этого полого конуса совпадает с объектом. Лучи света, проходя через объект исследования в косом направлении, не попадают в объектив микроскопа. В него проникает только свет, рассеянный объектом. Поэтому на темном фоне препарата наблюдаются ярко светящиеся контуры микробных клеток и других частиц. Микроскопия в.темном поле зрения позволяет определить форму микроба и его подвижность. Обычно темнопольную микроскопию используют при исследовании микроорганизмов, которые слабо поглощают свет и не видны в световом микроскопе, как, например, спирохеты. Для создания темного поля можно также использовать обычный конденсор Аббе, поместив в центр его кружок черной бумаги. В этом случае свет устанавливают и центрируют по световому полю, а затем затемняют конденсор Аббе. Препарат для микроскопии готовят по методу раздавленной капли. Толщина предметного стекла не должна превышать 1 - 1,1 мм, иначе фокус конденсора придется в толщу стекла. Между конденсором и предметным стеклом помещают жидкость (дистиллированная вода) с показателем преломления, близким к показателю преломления стекла. При правильной установке освещения на темном поле видны яркие светящиеся точки.

Фазово-контрастная микроскопия. Фазово-контрастное приспособление дает возможность увидеть в микроскоп прозрачные объекты. Они приобретают высокую контрастность изображения, которая может быть позитивной или негативной. Позитивным фазовым контрастом называют темное изображение объекта в светлом поле зрения, негативным - светлое изображение объекта на темном фоне.

Для фазово-контрастной микроскопии используют обычный микроскоп и дополнительное фазово-контрастное устройство, а также специальные осветители. Глаз человека может улавливать изменения длины волны и интенсивности видимого света только при исследовании непрозрачных объектов, проходя через которые, световые волны равномерно или неравномерно ослабляются, т. е. меняют величину амплитуды. Такие объекты называются амплитудными. Обычно это фиксированные и окрашенные препараты микроорганизмов или срезы тканей. Живые клетки вследствие высокого содержания в них воды слабо поглощают свет, поэтому почти все компоненты их прозрачны.

Метод фазово-контрастной микроскопии основан на том, что живые клетки и микроорганизмы, слабо поглощающие свет, тем не менее способны изменять фазу проходящих через них лучей (фазовые объекты). В разных участках клеток, отличающихся показателем преломления и толщиной, изменение фаз будет неодинаковым. Эти разности фаз, возникающие при прохождении видимого света через живые объекты, можно сделать видимыми с помощью фазово-контрастной микроскопии.

Фазово-контрастная микроскопия осуществляется с помощью обычного светового микроскопа и специального приспособления, куда входят фазово-контрастный конденсор с кольцевыми диафрагмами и фазовая пластинка, имеющая форму кольца. Для первоначальной наводки используют вспомогательный микроскоп, с помощью которого добиваются того, чтобы через кольцевую диафрагму конденсора в объектив проникало лишь кольцо света. Луч света, пройдя через прозрачный объект, расщепляется на два луча: прямой и дифрагированный (преломленный). Прямой луч, проникнув через частицу, фокусируется на кольце фазовой пластинки, а дифрагированный луч как бы огибает частицу, не проходя через нее. Поэтому оптические пути их различны и между ними создается разность фаз. Она сильно увеличивается с помощью фазовой пластинки и благодаря этому контрастность изображения повышается, что позволяет наблюдать не только фазовые объекты целиком, но и детали строения, например, живых клеток и микроорганизмов.

Электронная микроскопия. Позволяет наблюдать объекты, размеры которых лежат за пределами разрешающей способности светового микроскопа (0,2 мкм). Электронный микроскоп применяется для изучения вирусов, тонкого строения различных микроорганизмов, макромолекулярных структур и других субмикроскопических объектов.

16. Методы определения чувствительности бактерий к антибиотикам. Для определения чувствительности бактерий к антибиотикам(антибиотикограммы) обычно применяют:

Метод диффузии в агар. На агаризованную питательную среду засевают исследуемый микроб, а затем вносят антибиотики. Обычно препараты вносят или в специальные лунки в агаре, или на поверхности посева раскла­дывают диски с антибиотиками («метод дисков»). Учет результатов проводят через сутки по наличию или отсутствию роста микробов вокруг лунок (дисков).Метод дисков - качественный и позволяет оценить, чувствителен или устойчив микроб к препарату.

Методы определения минимальных ингибирующих и бактерицидных концентраций, т. е. минимального уровня антибиотика, который позволяет предотвратить видимый рост микробов в питательной среде или пол­ностью ее стерилизует. Этоколичественные методы, которые позволяют рассчитать дозу препарата, так как концентрация антибиотика в крови должна быть значительно выше минимальной ингибирующей концентрации для возбудителя инфекции. Введение адекватных доз препарата необходимо для эффективного лечения и профилактики формирования устойчивых микробов.

Есть ускоренные способы, с применением автоматических анализаторов.

Определение чувствительности бактерий к антибиотикам методом дисков. Исследуемую бактериальную культуру засевают газоном на питательный агар или среду АГВ в чашке Петри.

Среда АГВ: сухой питательный рыбный бульон, агар-агар, натрий фосфат двузамещенный. Среду готовят из сухого порошка в соответствии с инструкцией.

На засеянную поверхность пинцетом помещают на одинаковом расстоянии друг от друга бумажные диски, содержащие определенные дозы разных антибиотиков. Посевы инкубируют при 37 °С до следующего дня. По диаметру зон задержки роста исследуемой культуры бактерий судят о ее чувствительности к антибиотикам.

Для получения достоверных результатов необходимо применять стандартные диски и питательные среды, для контроля которых используются эталонные штаммы соответствующих микроорганизмов. Метод дисков не дает надежных данных при определении чувствительности микроорганизмов к плохо диффундирующим в агар полипептидным антибиотикам (например, полимиксин, ристомицин). Если эти антибиотики предполагается использовать для лечения, рекомендуется определять чувствительность микроорганизмов методом серийных разведений.

Определение чувствительности бактерий к антибиотикам методом серийных разведений. Данным методом определяют минимальную концентрацию антибиотика, ингибирующую рост исследуемой культуры бактерий. Вначале готовят основной раствор, содержащий определенную концентрацию антибиотика (мкг/мл или ЕД/мл) в специальном растворителе или буферном растворе. Из него готовят все последующие разведения в бульоне (в объеме 1 мл), после чего к каждому разведению добавляют 0,1 мл исследуемой бактериальной суспензии, содержащей 10 6 -10 7 бактериальных клеток в 1 мл. В последнюю пробирку вносят 1 мл бульона и 0,1 мл суспензии бактерий (контроль культуры). Посевы инкубируют при 37 °С до следующего дня, после чего отмечают результаты опыта по помутнению питательной среды, сравнивая с контролем культуры. Последняя пробирка с прозрачной питательной средой указывает на задержку роста исследуемой культуры бактерий, под влиянием содержащейся в ней минимальной ингибирующей концентрации (МИК) антибиотика.

Оценку результатов определения чувствительности микроорганизмов к антибиотикам проводят по специальной готовой таблице, которая содержит пограничные значения диаметров зон задержки роста для устойчивых, умеренно устойчивых и чувствительных штам­мов, а также значения МИК антибиотиков для устойчивых и чувствительных штаммов.

К чувствительным относятся штаммы микроорганизмов, рост которых подавляется при концентрациях препарата, обнаруживаемых в сыворотке крови больного при использовании обычных доз антибиотиков.К умеренно устойчивым относятся штаммы , для подавления роста которых требуются концентрации, создающиеся в сыворотке крови при введении максимальных доз препарата.Устойчивыми являются микроорганизмы , рост которых не подавляется препаратом в концентрациях, создаваемых в организме при использовании максимально допустимых доз.

Определение антибиотика в крови, моче и других жидкостях организма человека. В штатив устанавливают два ряда пробирок. В одном из них готовят разведения эталонного антибиотика, в другом - исследуемой жидкости. Затем в каждую пробирку вносят взвесь тест-бактерий, приготовленную в среде Гисса с глюкозой. При определении в исследуемой жидкости пенициллина, тетрациклинов, эритромицина в качестве тест-бактерий используют стандартный штамм S. aureus, а при определении стрептомицина - Е. coli. После инкубирования посевов при 37 °С в течение 18-20 ч отмечают результаты опыта по помутнению среды и ее окрашиванию индикатором вследствие расщепления глюкозы тест-бактериями. Концентрация антибиотика определяется умножением наибольшего разведения исследуемой жидкости, задерживающей рост тест-бактерий, на минимальную концентрацию эталонного антибиотика, задерживающего рост тех же тест-бактерий. Например, если максимальное разведение исследуемой жидкости, задерживающее рост тест-бактерий, равно 1:1024, а минимальная концентрация эталонного антибиотика, задерживающего рост тех же тест-бактерий, 0,313 мкг/мл, то произведение 1024х0,313=320 мкг/мл составляет концентрацию антибиотика в 1 мл.

Определение способности S. aureus продуцировать бета-лактамазу. В колбу с 0,5 мл суточной бульонной культуры стандартного штамма стафилококка, чувствительного к пенициллину, вносят 20 мл расплавленного и охлажденного до 45 °С питательного агара, перемешивают и выливают в чашку Петри. После застывания агара в центр чашки на поверхность среды помещают диск, содержащий пенициллин. По радиусам диска петлей засевают исследуемые культуры. Посевы инкубируют при 37 °С до следующего дня, после чего отмечают результаты опыта. О способности исследуемых бактерий продуцировать бета-лактамазу судят по наличию роста стандартного штамма стафилококка вокруг той или другой исследуемой культуры (вокруг диска).

Температура – один из основных факторов, определяющих возможность и интенсивность размножения микроорганизмов.

Микроорганизмы могут расти и проявлять свою жизнедеятельность в определенном температурном диапазоне и в зависимости от отношения к температуре делятся на психрофилы, мезофилы и термофилы. Температурные диапазоны роста и развития микроорганизмов этих групп приведены в таблице 9.1.

Таблица 9.1 Деление микроорганизмов на группы в зависимости

от отношения к температуре

микроорганизмов

Т(°С) максим.

Отдельные

представители

1. Психрофилы (холодолюбивые)

Бактерии, обитающие в холодильниках, морские бактерии

2. Мезофилы

Большинство грибов, дрожжей, бактерий

3. Термофилы

(теплолюбвые)

Бактерии, обитающие в горячих источниках. Большинство образуют устойчивые споры

Разделение микроорганизмов на 3 группы весьма условно, так как микроорганизмы могут приспосабливаться к несвойственной им температуре.

Температурные пределы роста определяются терморезистентностью ферментов и клеточных структур, содержащих белки.

Среди мезофилов встречаются формы с высоким температурным максимумом и низким минимумом. Такие микроорганизмы называют термотолерантными.

Действие высоких температур на микроорганизмы. Повышение температуры выше максимальной может привести к гибели клеток. Гибель микроорганизмов наступает не мгновенно, а во времени. При незначительном повышении температуры выше максимальной микроорганизмы могут испытывать «тепловой шок» и после недлительного пребывания в таком состоянии они могут реактивироваться.

Механизм губительного действия высоких температур связан с денатурацией клеточных белков. На температуру денатурации белков влияет содержание в них воды (чем меньше воды в белке, тем выше температура денатурации). Молодые вегетативные клетки, богатые свободной водой, погибают при нагревании быстрее, чем старые, обезвоженные.

Термоустойчивость – способность микроорганизмов выдерживать длительное нагревание при температурах, превышающих температурный максимум их развития.

Гибель микроорганизмов наступает при разных значениях температур и зависит от вида микроорганизма. Так, при нагревании во влажной среде в течение 15 мин при температуре 50–60 °С погибает большинство грибов и дрожжей; при 60–70 °С – вегетативные клетки большинства бактерий, споры грибов и дрожжей уничтожаются при 65–80° С. Наибольшей термоустойчивостью обладают вегетативные клетки термофилов (90–100 °С) и споры бактерий (120 °С).

Высокая термоустойчивость термофилов связана с тем, что, во первых, белки и ферменты их клеток более устойчивы к температуре, во вторых, в них содержится меньше влаги. Кроме того, скорость синтеза различных клеточных структур у термофилов выше скорости их разрушения.

Термоустойчивость спор бактерий связана с малым содержанием в них свободной влаги, многослойнойоболочкой, в состав которой входит кальциевая сольдипиколиновой кислоты.

На губительном действии высоких температур основаны различные методы уничтожения микроорганизмов в пищевых продуктах. Это кипячение, варка, бланширование, обжарка, а также стерилизация и пастеризация. Пастеризация – процесс нагревания до 100˚С при котором происходит уничтожение вегетативных клеток микроорганизмов. Стерилизация – полное уничтожение вегетативных клеток и спор микроорганизмов. Процесс стерилизации ведут при температуре выше 100 °С.

Влияние низких температур на микроорганизмы. К низким температурам микроорганизмы более устойчивы, чем к высоким. Несмотря на то, что размножение и биохимическая активность микроорганизмов при температуре ниже минимальной прекращаются, гибели клеток не происходит, т.к. микроорганизмы переходят в состояние анабиоза (скрытой жизни) и остаются жизнеспособными длительное время. При повышении температуры клетки начинают интенсивно размножаться.

Причинами гибели микроорганизмов при действии низких температур являются:

Нарушение обмена веществ;

Повышение осмотического давления среды вследствие вымораживания воды;

В клетках могут образоваться кристаллики льда, разрушающие клеточную стенку.

Низкая температура используется при хранении продуктов в охлажденном состоянии (при температуре от 10 до –2 °С) или в замороженном виде (от –12 до –30 °С).

Лучистая энергия. В природе микроорганизмы постоянно подвергаются воздействию солнечной радиации. Свет необходим для жизнедеятельности фототрофов. Хемотрофы могут расти и в темноте, а при длительном воздействии солнечной радиации эти микроорганизмы могут погибнуть.

Воздействие лучистой энергии подчиняется законам фотохимии: изменения в клетках могут быть вызваны только поглощенными лучами. Следовательно, для эффективности облучения имеет значение проникающая способность лучей, которая зависит от длины волны и дозы.

Доза облучения, в свою очередь, определяется интенсивностью и временем воздействия. Кроме того, эффект воздействия лучистой энергии зависит от вида микроорганизма, характера облучаемого субстрата, степени обсемененности его микроорганизмами, а также от температуры.

Низкие интенсивности видимого света (350–750 нм) и ультрафиолетовых лучей (150–300 нм), а также низкие дозы ионизирующих излучений либо не влияют на жизнедеятельность микроорганизмов, либо приводят к ускорению их роста и стимуляции метаболических процессов, что связано с поглощением квантов света определенными компонентами или веществами клеток и переходом их в электронно-возбужденное состояние.

Более высокие дозы излучений вызывают торможение отдельных процессов обмена, а действие ультрафиолетовых и рентгеновских лучей может привести к изменению наследственных свойств микроорганизмов - мутациям, что широко используется для получения высокопродуктивных штаммов.

Гибель микроорганизмов под действием ультрафиолетовых лучей связана:

С инактивацией клеточных ферментов;

С разрушением нуклеиновых кислот;

С образованием в облучаемой среде перекиси водорода, озона и т.д.

Следует отметить, что наиболее устойчивыми к действию ультрафиолетовых лучей являются споры бактерий, затем споры грибов и дрожжей, далее окрашенные (пигментированные)клетки бактерий.Наименее устойчивы вегетативные клетки бактерий.

Гибель микроорганизмов под действием ионизирующих излучений вызвана:

Радиолизом воды в клетках и субстрате. При этом образуются свободные радикалы, атомарный водород, перекиси, которые, вступая во взаимодействие с другими веществами клетки, вызывают большое количество реакций, не свойственных нормально живущей клетке;

Инактивацией ферментов, разрушением мембранных структур, ядерного аппарата.

Радиоустойчивость различных микроорганизмов колеблется в широких пределах, причем микроорганизмы значительно радиоустойчивей высших организмов (в сотни и тысячи раз). Наиболее устойчивы к действию ионизирующих излучений споры бактерий, затем грибы и дрожжи и далее бактерии.

Губительное действие ультрафиолетовых и рентгеновских γ-лучей используется на практике.

Ультрафиолетовыми лучами дезинфицируют воздух холодильных камер, лечебных и производственных помещений, используют бактерицидные свойства ультрафиолетовых лучей для дезинфекции воды.

Обработка пищевых продуктов низкими дозами гамма-излуче-ний называется радуризацией.

Электромагнитные колебания и ультразвук. Радиоволны - это электромагнитные волны, характеризующиеся относительно большой длиной (от миллиметров до километров) и частотами от 3·10 4 до 3·10 11 герц.

Прохождение коротких и ультрарадиоволн через среду вызывает возникновение в ней переменных токов высокой (ВЧ) и сверхвысокой частоты (СВЧ). В электромагнитном поле электрическая энергия преобразуется в тепловую.

Гибель микроорганизмов в электромагнитном поле высокой интенсивности наступает в результате теплового эффекта, но полностью механизм действия СВЧ-энергии на микроорганизмы не раскрыт.

В последние годы сверхвысокочастотная электромагнитная обработка пищевых продуктов все более широко применяется в пищевой промышленности (для варки, сушки, выпечки, разогревания, размораживания, пастеризации и стерилизации пищевых продуктов). По сравнению с традиционным способом тепловой обработки время нагревания СВЧ-энергией до одной и той же температуры сокращается во много раз, в связи с чем полнее сохраняются вкусовые и питательные свойства продукта.

Ультразвук. Ультразвуком называют механические колебания с частотами более 20 000 колебаний в секунду (20 кГц).

Природа губительного действия ультразвука на микроорганизмы связана:

С кавитационным эффектом. При распространении в жидкости УЗ-волн происходит быстро чередующееся разряжение и сжатие частиц жидкости. При разряжении в среде образуются мельчайшие полые пространства – «пузырьки», заполняющиеся парами окружающей среды и газами. При сжатии, в момент захлопывания кавитационных «пузырьков», возникает мощная гидравлическая ударная волна, вызывающая разрушительное действие;

с электрохимическим действием УЗ-энергии. В водной среде происходит ионизация молекул воды и активация растворенного в ней кислорода. При этом образуются вещества, обладающие большой реакционной способностью, которые обуславливают ряд химических процессов, неблагоприятно действующих на живые организмы.

Благодаря специфическим свойствам ультразвук все более широко применяют вразличныхобластях техники и технологии многихотраслей народного хозяйства. Ведутся исследования по применению УЗ-энергии для стерилизации питьевой воды, пищевых продуктов (молока, фруктовых соков, вин), мойки и стерилизации стеклянной тары.