Геотермальная энергия принцип работы. Принцип работы геотермальной электростанции

Геотермальные ТЭС на месторождениях пароводяной смеси или геотермальных рассолов с конденсационными турбинами и одно- или многократным расширением геотермального флюида.

Если на месторождениях пароводяной смеси температура отсепарированной воды достаточно высока (выше 100 °С), то можно путем расширения [сбросом давления в расширителе 9 (рис.) получить дополнительный пар, который направляется на промежуточный вход турбины.

Это позволяет получить дополнительную работу и, тем самым, повысить КПД энергоустановки. Таких каскадов теоретически может быть несколько. На практике, однако, возможность применения таких схем ограничивается солеотложением в элементах оборудования в результате повышения концентрации солей выше предельной растворимости. На месторождениях пароводяной смеси раньше всего образуются отложения кремневой кислоты, растворимость которой быстро уменьшается при снижении температуры. На месторождениях геотермальных рассолов, добываемых из карбонатных коллекторов (Северный Кавказ) при расширении рассолов выделяется растворенный СО2 , что приводит к нарушению углекислотного равновесия и образованию отложений кальцита, магнезита и т.п. Поэтому применение схем с расширителями возможно лишь при отсутствии массивных солеотложений или при использовании регулярной очистки оборудования.
Расширители являются сравнительно дешевыми объемными аппаратам и, поэтому их применение практически не увеличивает капиталовложения, остающиеся на уровне 1000 долл/кВт.

Рис . 3. С хе ма Гео ТЭС с конд енс ационно й т урб ино й и расши ре -

нием геот ерма льно го флю ида:


1 — подъемная скважина; 2 — сепаратор; 3 — конденсационная турбина; 4 — конденсатор; 5 — градирня; 6 — циркуляционный насос; 7 — конденсатный насос; 8 — нагнетательная скважина; 9 — расширитель.

Геотермальные ТЭС с использованием низкокипящих чистых или смесевых рабочих тел.

Во избежание солеотложений, возникающих при упаривании геотермальных рассолов в схемах с расширителями, применяется схема с использованием низкокипящих рабочих тел.

Геотермальный рассол из подъемной скважины 1 поступает в теплообменник-парогенератор 2 (который обычно выполняется в виде двух кожухотрубных аппаратов ― испарителя и подогревателя (экономайзера)). После охлаждения до предельной температуры, определяемой условием отсутствия солеотложений, рассол возвращается обратно в пласт по нагнетательной скважине 3 . В связи с высокой стоимостью скважин, для увеличения расхода геотермального рассола иногда применяются погружные насосы, размещаемые на глубине до 200 м в подъемной скважине, а для обратной закачки практически всегда используется нагнетательный насос перед реинжекционной скважиной3 . Расход электроэнергии на привод этих насосов иногда достигает 20% от выработки электроэнергии.


Рис . 4 . Схем а Гео ТЭС с испо льзование м низ ко кипящ и х ра боч их тел :

1 по дъе мна я скважин а; 2 — теплообм е нник- паро генер ато р; 3 — нагнетательна я с кважин а; 4 — тур бин а ; 5 — к о нде нсато р; 6 циркуляционный нас ос

В качестве рабочих тел таких ГеоТЭС используются хладагенты (углеводороды: пропан, бутан, фреоны, в последнее время рассматривается возможность применения водоаммиачной смеси). Жидкое рабочее тело подогревается и испаряется в парогенераторе 2 и подается на вход турбины 4 . Расширение пара низкокипящих рабочих тел в турбине происходит (в отличие от водяного пара) в области сухого пара, что связано с аномальным видом правой ветви их кривых насыщения в T ,s -диаграмме—энтропия уменьшается при снижении температуры, поэтому из турбины выходит сухой пар. Если его температура значительно выше температуры конденсации, определяемой обычно температурой воздуха, целесообразно возвратить избыточное тепло в цикл, для чего используется непоказанный на схеме рекуперативный теплообменник, устанавливаемый перед конденсатором 5 , который обычно является воздухоохлаждаемым из-за дефицита охлаждающей воды. Сконденсированное рабочее тело циркуляционным насосом 6 подается на вход парогенератора (при наличии рекуператора—через него).
Первая в мире геотермальная энергоустановка по такой схеме с фреоном-22 в качестве рабочего тела была изготовлена в 1956 г. и испытана на Паратунском месторождении термальных вод на Камчатке. Оборудование для таких ГеоТЭС с разными рабочими телами изготавливалось рядом фирм в США, Японии, Италии, Австрии. В настоящее время промышленный выпуск энергомодулей мощностью 0,5…3 МВт с низкокипящими рабочими телами осуществляется фирмой «Ормат» (Израиль). Общая мощность ГеоТЭС, построенных во многих странах с этими энергомодулями, превышает 350 МВт. В нашей стране на Кировском заводе был спроектирован энергомодуль мощностью 1,5 МВт на озонобезопасном фреоне-42b. В настоящее время работы по созданию специальной турбины ведутся в ОАО «Наука».
В последние годы особое внимание проявляется к использованию водоаммиачной смеси в качестве рабочего тела. Этот интерес обусловлен изменением температуры в процессе парообразования смеси ― сначала при более низкой температуре выкипает, в основном, аммиак и по мере уменьшения его концентрации температура кипящей смеси растет. В результате удается сблизить кривые охлаждения геотермального рассола и нагрева и парообразования водоаммиачной смеси в I ,t -диаграмме, что приводит к снижению необратимых потерь эксергии при теплообмене и повышению КПДцикла ГеоТЭС. Кроме того, путем изменения концентрации аммиака в смеси можно эффективно использовать одну и ту же турбину на геотермальных месторождениях с температурами рассолов 80…200 °С.
Э н ерг омо д у ли ф ирм ы «О рмат » постав ляют с я п о це н е в средне м 100 0 д о лл . з а 1 к Вт .

Геотермальные ТЭС комбинированного цикла с паровой турбиной в верхнем цикле и низкокипящим рабочим телом в нижнем цикле.


Д ля боле е по лног о испо льзован ия т еплово г о п от е нциал а геотермально й пароводяно й смес и целе сообразно испо льзо ват ь комб ин ирова нну ю тепл ову ю схем у.

Из подъемной скважины 1 пароводяная смесь подается в сепаратор 2 , откуда пар направляется в противодавленческую паровую турбину 3 , после выхода из турбины пар поступает в конденсатор 4 ,являющийся парогенератором низкокипящего рабочего тела. Образующийся конденсат используется на станции. Отсепарированный горячий геотермальный рассол подается в пароперегреватель низкокипящего рабочего тела 5 , после чего возвращается в пласт по нагнетательной скважине 10 . Перегретый пар низкокипящего РТ подается на вход бинарной турбины 6 , после расширения в которой идет в рекуператор 7 , где охлаждается и идет в воздушный конденсатор 8 . Сконденсированное низкокипящее РТ питательным насосом 9 подается на предварительный подогрев в рекуператор 7 и затем в парогенератор 4 . Такая схема позволяет использовать тепло отсепарированного рассола для перегрева низкокипящего РТ, что приводит к увеличению КПД ГеоТЭС. Особенно эффективно применение такой схемы при низких температурах воздуха, так как благодаря низким температурам замерзания низкокипящих РТ (ниже -50 °С) можно осуществлять конденсацию при отрицательных температурах. Для условий Мутновского месторождения пароводяной смеси (среднегодовая температура воздуха ― 5 °С) выработка электроэнергии на комбинированной ГеоТЭС увеличивается на 20 % по сравнению с традиционным конденсационным циклом. Соответствующий патент получен совместно ОАО «Наука» и ОАО «ЭНИН им. Г.М. Кржижановского». ко

нденсатор ; 5 пароперегреватель ; 6 — бинарна я турби на; 7 — рекуператор ; 8 — воздушны й конденсато р; 9 — пита тельн ый насос ; 1 0 — нагнетательна я скважина.


Оборудование ГеоТЭС комбинированного цикла выпускается израильской фирмой «Ормат», оно установлено на ряде геотермальных станций на Филиппинах и Индонезии. В России по этой схеме планируется построить 4-й блок Верхне-Мутновской ГеоТЭС общей мощностью 6 МВт.

Васильев В.А, Тарнижевский Б.В., ОАО «ЭНИН»

Геотермальные электростанции находятся на этапе мощного развития. По данным исследования 2005 года, проведенного итальянской электросетевой компанией ENEL, геотермальные электростанции производят 8900 мегаватт электричества в 24 странах мира. При этом в США производится большая часть (32%) такого вида энергии.
Первая геотермальная электростанция появилась в Лардерелло (Италия) в 1904 году. Команда ученых под руководсвом принца Пьеро Гинори Конти разработала способ использования пара из местных источников для вращения турбин генератора. Эта электростанция работает и по сей день. В 1950 г. правительство Новой Зеландии начало изучение возможности использования геотермальных источников Ваиракеи для получения электричества. На Ваиракеи находятся гейзеры, горячие источники и грязевые бассейны. В 1958 году открылась геотермальная электростанция Ваиракеи, вторая в мире. Крупнейшая геотермальная электростанция называется Гейзеры, находится она близ города Санта-Роза в штате Калифорния. Эта станция открылась в 1960 году. Хотя самих гейзеров на станции нет, в регионе есть много паровых скважин. Гейзеры производят около 750 мегаватт электричества - этого достаточно для электроснабжения такого города, как Сан-Франциско.

С 2000 года объем получаемой геотермальной энергии во Франции, России и Кении утроился. В таких странах, как Филиппины, Исландия, Сальвадор из геотермальных источников получают 25% электричества, в Тибете - 30%.

В основе геотермальной электростанции лежит один из трех процессов. Электростанции прямого парового нагрева или нагрева сухим паром строятся в районах, где основной источник геотермальной активности - паровые скважины. Сжатый пар из скважины попадает по трубам к турбинам. Турбина состоит из серии наклонных лопастей, установленных на центральном вале. Сжатый пар, проходя через турбину, вращает ее. Вращающаяся турбина включает генератор. Вода охлаждается и поступает обратно в землю. Лардерелло и Гейзеры работают именно так.

На испульсной паровой электростанции для получения пара используется вода при температуре выше 180 градусов Цельсия. С помощью особой техники с большой глубины поступает горячая вода под высоким давлением и распрыскивается в емкости с низким давлением. Вода мгновенно превращается в пар. Пар, находящийся под высоким давлением, вращает турбины генератора, вырабатывающего электричество. Вода охлаждается и поступает обратно под землю.

На электростанциях двойного цикла используется средняя по температуре термальная вода, нагретая от 107 до 182 градусов. Термальная вода поступает в теплообменник, по которому течет жидкость, имеющая точку кипения ниже, чем у воды. Тепло превращает жидкость в пар, вращающий турбины. Термальная вода не входит в контакт с турбинами, из теплообменника она попадает обратно под землю. Большая часть геотермальных ресурсов имеет среднюю температуру, поэтому в будущем планируется постройка, в основном, электростанций двойного цикла.

Проблемы

Геотермальные электростанции поднимают вопросы о геотермальной энергии. Один из таких вопросов - провалы земли при изначальном заборе воды или пара. Это может быть серьезной проблемой. На Ваиракеи после начала работы станции земля опустилась на 13 м. Эта проблема на Ваиракеи существует до сих пор. На новых станциях вода быстро возвращается, чтобы сохранять давление и уровень подземных вод.

На геотермальных электростанциях двойного цикла эмиссии каких-либо газов не происходит. Однако паровые электростанции выбрасывают небольшое количество CO2, объем выбросов зависит от состава воды. Выбрасывается также небольшое количество сульфида водорода, недостаточное для образования кислотного дождя. Так как подземные воды содержат растворенную серу, то работа станции сопровождается неприятным для нас запахом. В США геотермальные электростанции должны отфильтровывать сульфид водорода в выбросах, сжигая его или преобразуя в диоксид серы. Диоксид серы впоследствии можно растворить или превратить в серную кислоту и продать. Соли и минералы, отфильтровываемые из воды, закачиваются обратно в скважину. Часть отходов перерабатывается в плане получения полезных минералов.

По течению

Исследователи работают над использованием тепла Земли, пробуривая скважины в теплые слои земной коры, близкие к мантии. Однако эти идеи требуют бурения намного более глубоких скважин, чем позволяют существующие технические возможности.

Энергия биомассы

Биомасса - один из быстрорастущих возобновляемых источников энергии. Что же такое биомасса? Как она используется? И как она заменяет нефть, природный газ и уголь, от которых мы так зависим?

Название биомасса говорит само за себя: био логические вещества - растения в больших объемах, (в массе ). Биологическое топливо позволяет получать энергию из растений и преобразовывать ее форму, используемую для получения электричества или заправки автомобилей.

Вот как это работает. В процессе фотосинтеза в растениях появляются углеводороды: сахар и крахмал. Углеводороды - органические компоненты, получаемые из угля и водорода. Эти компоненты хранят энергию в связях, удерживающих их. Хранимая энергия испускается, когда растения съедают или, что нам важнее, когда растения закапывают. Кислород в воздухе вступает в реакцию с углеродом в растениях, при этом выделяется энергия, вода, и диоксид углерода (CO 2). Эта энергия используется для превращения воды в пар. Пар вращает турбины, вырабатывающие электричество.

Есть и другой способ высвобождения энергии растений. В процессе ферментации сахар в растениях превращается в спирт. Спирт в жидком или газообразном виде можно сжигать, чтобы получить энергию. Топливо, получаемое из биомассы таким образом, называется биологическим.

Одно из сильнейших достоинств биомассы в том, что она получается из растений, которые легко возобновляются - их можно выращивать повторно. Потенциал использования биомассы очень велик. Так как на фабрике в качестве топлива используются те же водородные и углеродные элементы, биомасса может заменить нефть и стать тем, что называют общественными химикалиями. Эти вещества используются для производства многих товаров, таких как изделия из пластика, краски и клей. Однако сейчас биомасса является малоиспользуемым возобновляемым источником энергии.

Что такое биомасса?

Биомасса - очень широкий термин, которым называют любой вид растительных отходов. Сюда относят и древесные, и сельскохозяйственные отходы, а также некоторые виды зерновых, выращенных специально для использования в качестве биотоплива.

Тысячи лет назад кто-то специально положил дерево в огонь, чтобы получить тепло. Это было первое использование биотоплива. С тех пор дерево в качестве топлива использовалось очень долго. Жители многих стран до сих пор обогревают свои дома и готовят еду, сжигая дрова. Несмотря на общедоступность, дерево при сжигании в костре является относительно неэффективным топливом. При использовании в качестве биомассы дерево используется максимально эффективно.

ЖИВЫЕ СИСТЕМЫ

Люди сжигают древесные и растительные отходы и получают энергию. Отходы поставляет промышленность: вырубка леса, строительство, производство бумаги, фермерские хозяйства, твердый мусор с городских свалок и метан – газ, вырабатываемый на свалках. Некоторые виды трав после ферментации также могут быть использованы в качестве биотоплива.

Как используется биотопливо?

Во всем мире биотопливо – преимущественно это продукты из древесины, сжигается вместе с углем на теплоэлектростанциях. Этот процесс называется попутным сжиганием, поскольку вместо одного вида топлива используется два. Попутное сжигание используется в различных видах угольных бойлеров. Чтобы получить максимум от использования биотоплива в конструкцию бойлеров, необходимо внести лишь небольшие изменения. Наиболее эффективный способ - добавлять биотопливо после распыления угля.

В 2005 году в странах Европейского союза 4% энергии получали, используя биотопливо. Лидерами в этом были Финляндия и Швеция: 16 и 20% энергии соответственно. Проекты по использованию биоотходов развиваются в Азии, чтобы заменить до сих пор широко используемое дерево Биотопливные проекты так же развиваются в Африке.

В 2002 году в США объем биоэнергии составлял 9733 мегаватта. Большинство видов биотоплива попутно сжигается вместе с углем для достижения базовой мощности - устойчивого электроснабжения (энергии, необходимой для обеспечения повышенного спроса во время пиковых нагрузок). Биоэнергия обеспечивает более 3% общего энергопотребления США. В США биотопливо превзошло гидроэлектростанции как возобновляемый источник энергии.

Очень часто биотопливо используется промышленностью, которая его и создает. К примеру, деревообрабатывающая промышленность сжигает собственные древесные отходы, чтобы получать пар и электроэнергию, необходимые для работы фабрики. К отходам относится древесные опилки, неиспользуемые ветки и щепки. Лесопромышленность получает более 50% необходимого ей электричества, используя собственные отходы. То же самое касается бумажной промышленности.

Другой вариант использования биомассы - получения биотоплива. Крахмал или сахаросодержащие злаковые превращаются в этиловый спирт: этанол. В Бразилии большая часть транспорта заправляется этанолом. Перевод транспорта на этанол начался в середине 1970-х, когда впервые повысились цены на бензин. Лидеры бразильской промышленности решили снизить зависимость страны от нефти. Этаноловая промышленность развивалась медленно, год за годом. В Бразилии выращивается сахарный тросник, он ферментируется и превращается в этанол. Бразильские автомобили должны быть универсальными, то есть работать и на этаноле, и на бензине. Потребители делали выбор сами, основываясь на цене топлива.

Вскоре опыт Бразилии стали перенимать другие страны. Производство этанола увеличивается в Китае и Европейском союзе. В США в 2004 году производилось 12,9 млрд. литров этанола, что почти в два раза больше показателя 2002 года. Производимый этанол добавляется в бензин для увеличения октанового числа и снижения выбросов. В США источником этанола является кукуруза. Злаковые дают меньше этанола, чем сахарный тростник или свекла, на земли выход этанола меньше в два раза.

Альтернативой кукурузе как источнику этанола в США может быть прутьевидное просо. Родина этого растения - Северная Америка, просо является более эффективным источником этанола, нежели кукуруза. Использование этого злака находится в стадии опробации.

В США для экспериментальной заправки городских автобусов используется смесь бензина и этанола, называемая E-дизельным топливом. По мере роста цен на бензин, этанол к автомобилям, работающим на этаноле продолжает увеличиваться.

Потребление биодизельного топлива так же растет и в Европе. Биодизельное топливо получается из растительного масла, прошедшего так называемую трансэфиризации. Животный жир и ресторанные отходы так же могут быть превращены в биотопливо. Это биотопливо в ближайшие дни может полностью заменить дизельного топливо или использоваться в виде смеси: 20% биотоплива и 80% дизельного. В 2005 году в Европейских странах произведено более 3 миллионов метрических тонн биотоплива. Самым крупным потребителем и производителем является Германия. В мире начинают появляться специальные программы по популяризации использования биотоплива.

Препятствия

У использования биомассы в качестве топлива есть свои преграды. Как и в случае с ископаемым топливом, сжигание вызывает образование CO 2 . Однако ископаемое топливо выделяет CO 2 миллионы лет, создавая избыток CO 2 в атмосфере. В противоположность CO 2 , выделяемый биомассой при сжигании, поглощается растениями. Биотопливо считается "углеродно-нейтральным".

В биологическом уравнении ископаемые виды топлива все еще играют ключевую роль. Они используются на всех этапах получения биомассы: выращивании растений, их сборе, доставке и обработке. Биомасса не станет углеродно-нейтральной до тех пор, пока на всех этапах не будет использоваться возобновляемое топливо. Когда это произойдет - загадка для всех. Пока биотопливо позволяет сократить выбросы CO 2 , так как в процессе использования биомассы в атмосферу выбрасывается меньше СО 2 .

По течению

В будущем биомассы могут заменить нефть, газ и уголь во многих областях. Правительства различных стран будут финансировать исследования в области развития биотоплива. Среди вещей, которые предстоит усовершенствовать, - фабрики по очистке биомассы. Такие фабрики будут принимать различные виды биотоплива и создавать постоянный запас для использования в различных областях промышленности. На одной из рафинадных фабрик в качестве основы для ферментации используются сахар в виде целлюлозы и лигнин из растений, в результате получается этанол. В качестве биотоплива может использоваться дерево и различные виды трав. На других рафинадных заводах для стандартизации биомассы используется термохимический подход, превращающий массу в более эффективные жидкость или газ.

Исследователи видят будущее биомассы в замене нефти, как источника многих химикатов, используемых в современном мире. Вещи из пластика, краски и клеи можно производить не из нефтепродуктов, а из биомассы.

Геотермальные электростанции в России являются перспективным возобнобляемым источником. Россия имеет богатые геотермальные ресурсы с высокой и низкой температурами и делает хорошие шаги в этом направлении. Концепция экологической защиты может помочь продемонстрировать преимущества возобновляемых альтернативных источников использования энергии.

В России геотермальные исследования проведены в 53 научных центрах и высших учебных заведениях расположенных в разных городах и в разных ведомствах: Академии наук, Министерствах образования, природных ресурсов, топлива и энергетики. Такие работы проводятся в некоторых региональных научных центрах, как Москва, Санкт-Петербург, Архангельск, Махачкала, Геленджик, Приволжье (Ярославль, Казань, Самара), Урал (Уфа, Екатеринбург, Пермь, Оренбург), Сибирь (Новосибирск, Тюмень, Томск, Иркутск, Якутск), Дальний Восток (Хабаровск, Владивосток, Южно-Сахалинск, Петропавловск-на-Камчатке).

В этих центрах, проводятся: теоретические, прикладные, региональные изыскания, а также создается специальный инструментарий.

Использование геотермальной энергии

Геотермальные электростанции в России используются в основном для теплоснабжения и обогрева нескольких городов и населенных пунктов на Северном Кавказе и Камчатке с общей численностью населения 500 тыс.чел. Кроме того, в некоторых регионах страны глубокое тепло используется для теплиц общей площадью 465 тыс. м 2 . Самые активные гидротермальные ресурсы используются в Краснодарском крае, Дагестане и на Камчатке. Примерно половину добытых ресурсов применяется для теплоснабжения жилья и промышленных помещений, третья часть – на отопление теплиц, а только около 13 % – для промышленных процессов.

Помимо этого термальные воды используются примерно в 150 санаториях и 40 заводах по розливу минеральной воды. Количество электрической энергии, разработанной геотермальными электростанциями в России увеличивается по сравнению с мировым,но остается крайне незначительным.

Доля составляет всего 0,01 процента от общей выработки электроэнергии в стране.

Наиболее перспективным направлением использования низкотемпературных геотермальных ресурсов является применение тепловых насосов. Этот способ является оптимальным для многих регионов России – в Европейской части России и на Урале. Пока делаются первые шаги в этом направлении.

Электричество вырабатывается на некоторых электростанциях (ГеоЭС) только на Камчатке и Курильских островах. В настоящее время три станции работают на Камчатке:

Паужетская ГеоЭС (12 МВт), Верхне-Мутновская (12 МВт) и Мутновская ГеоЭС (50 МВт).

Паужетская ГеоЭС внутри

Две небольших ГеоЭС находятся в эксплуатации на островах Кунашир – Менделеевская ГеоТЭС, Итуруп – «Океанская» с установленной мощностью 7,4 МВт и 2,6 МВт соответственно.

Геотермальные электростанции в России по своему объему стоят на последних местах в мире. В Исландии приходится более 25% добываемой электроэнергии этим способом.

Менделеевская ГеоТЭС на Кунашире

Итуруп – «Океанская»

Россия имеет значительные геотермальные ресурсы и имеющийся потенциал гораздо больше, чем текущее положение.

Этот ресурс далеко не адекватно развит в стране. В бывшем Советском Союзе, геолого-разведочные работы полезных ископаемых, нефти и газа хорошо поддерживался. Однако такая обширная деятельность не направлена для изучения геотермальных резервуаров даже в следствие подхода: геотермальные воды не считались энергетическими ресурсами. Но все-таки результаты бурения тысяч “сухих скважин” (просторечие в нефтяной отрасли), приносят вторичную выгоду для геотермальных исследований. Эти заброшенные колодцы которые были во время исследований нефтяной отрасли дешевле отдать для новых целей.

Преимущества и проблемы использования геотермальных ресурсов

Экологические преимущества использования возобновляемых источников энергии, таких как геотермальная признано. Однако есть серьезные препятствия на пути развития возобновляемых ресурсов, которые препятствуют развитию. Подробные геологические исследования и дорогостоящее бурение геотермальных скважин представляет собой крупные финансовые затраты, связанные со значительными геологическими и техническими рисками.

Использование возобновляемых источников энергии, включая геотермальные ресурсы, имеют также преимущества.

  • Во-первых, использование местных энергетических ресурсов может снизить зависимость от импорта или необходимости строительства новых генерирующих мощностей для теплоснабжения в промышленных или жилых районах горячего водоснабжения.
  • Во-вторых, замена традиционных видов топлива чистой энергией вызывает значительные улучшения состоянии окружающей среды и общественного здравоохранения и имеет соответствующую экономию.
  • В-третьих, мера экономии энергии связан с КПД. Системы централизованного теплоснабжения являются общими в городских центрах России и нуждаются в модернизации и перехода на возобновляемые источники энергии со своими преимуществами. Это особенно важно с экономической точки зрения, устаревшие системы централизованного теплоснабжения не экономичны и инженерное время жизни уже истекло.

Геотермальные электростанции в России “чище” по сравнению с используемые ископаемое топливо. Международная конвенция по изменению климата и программы Европейского сообщества предусматривают продвижение возобновляемых источников энергии. Однако специфические юридические предписания относительно разведочных работ и добычи геотермальных вод отсутствует во всех странах. Отчасти это объясняется тем, что воды регулируются в соответствии с законами водных ресурсов, полезные ископаемые в соответствии с энергетическими законами.

Геотермальная энергия не относится к определенным равзделам законодательства и затрудняется решение различных методов эксплуатации и использования геотермальной мощности.

Геотермальная энергетика и устойчивое развитие

Промышленное развитие за последние два столетия принесло множество инноваций для человеческой цивилизации и принесли эксплуатацию природных ресурсов с угрожающей быстротой. Начиная с семидесятых годов 20-го века серьезные предупреждения о “пределах роста” пошли по миру с большим эффектом: ресурс эксплуатации, гонка вооружений, расточительное потребление разбазарили эти ресурсы в ускоренном темпе, наряду с экспоненциальным ростом численности населения планеты. На все это безумие необходимо большее количество энергии.

Самые расточительное и безперспективное – безответственность человека по привычке израсходования конечных и быстро истощающихся энергетических ресурсов угля, нефти и газа. Этой безответственной деятельностью занимается химическая промышленность для производства пластмасс, синтетических волокон, строительных материалов, красок, лаков, фармацевтических и косметических продуктов, пестицидов и многих других продуктов органической химии.

Но самый катастрофический эффект от использования ископаемого топлива -это равновесие биосферы и климата до такой степени, что необратимо будет влиять на наш жизненный выбор: рост пустынь, кислотные дожди портящие плодородные земли, отравление рек, озер и грунтовых вод, порча питьевой воды для растущего населения планеты, – и худшее из всех – более частые погодные катаклизмы, втягивающие ледники, разрушиающие горнолыжные курорты, тающие ледники, оползни, более сильные штормы, затопление густонаселенных прибрежных районов и островов, тем самым подвергая опасности людей и редкие виды флоры и фауны в результате миграций.

Потеря плодородных земель и культурное наследие происходит за счет добычи неумолимо растущего ископаемого топлива, выбросов в атмосферу, вызывающих глобальное потепление.

Путь к чистой, устойчивой энергетике сохраняющей ресурсы и привлечение биосферы и климата в естественный баланс связан с использованием в виде геотермальных электростанций в России.

Ученые понимают необходимость сокращения сжигания ископаемого топлива выходящего за пределы целевых показателей Киотского протокола для того, чтобы замедлить глобальное потепление атмосферы Земли.

Введение

1. Геотермальная энергия

Заключение

Библиографический список

Введение

Энерговооруженность общества - основа его научно-технического прогресса, база развития производственных сил. Её соответствие общественным потребностям - важнейший фактор экономического роста. Развивающееся мировое хозяйство требует постоянного наращивания энерговооруженности производства. Она должна быть надежна и с расчетом на отдаленную перспективу. Энергетический кризис 1973-1974 годов в капиталистических странах продемонстрировал, что этого трудно достичь, основываясь лишь на традиционных источниках энергии (нефти, угле, газе). Необходимо не только изменить структуру их потребления, но и шире внедрять нетрадиционные, возобновляемые источники энергии (НВИЭ). К ним относят солнечную, геотермальную, ветровую энергию, а также энергию биомассы и мирового океана. Сюда же, относят и атомную энергию, но на нынешнем этапе ее развития это представляется крайне расплывчато.

В отличие от ископаемых топлив, нетрадиционные виды энергии не ограничены геологически накопленными запасами. Это означает, что их использование и потребление не ведет к необратимому исчерпанию ресурсов. Основной фактор при оценке целесообразности использования НВИЭ - стоимость производимой энергии в сравнении со стоимостью энергии, получаемой обычными методами. Особое значение приобретают нетрадиционные источники для удовлетворения локальных потребителей энергии.

Из приведенных выше альтернативных источников энергии, одним из самых распространенных, развитым в технологическом плане, востребованным и, что важно, дешевым, является геотермальная энергия. Благодаря этим качествам, уже с начала XX века она получила широкое распространение даже относительно других альтернативных источников энергии, что дает право надеяться, что она займет достойное место в развитии альтернативной энергетики нынешнего, а возможно и последующих столетий.

1. Геотермальная энергия

Мировой потенциал. перспективы развития

Геотермальная энергия - это энергия, получаемая из природного тепла Земли, образующаяся за счет расщепления радионуклидов в результате физико-химических процессов в земных недрах.

Источники геотермальной энергии по классификации Международного энергетического агентства делятся на 5 типов:

-месторождения геотермального сухого пара - сравнительно легко разрабатываются, но довольно редки; тем не менее, половина всех действующих в мире ГеоТЭС использует тепло этих источников;

-источники влажного пара (смеси горячей воды и пара) - встречаются чаще, но при их освоении приходится решать вопросы предотвращения коррозии оборудования ГеоТЭС и загрязнения окружающей среды (удаление конденсата из-за высокой степени его засоленности);

-месторождения геотермальной воды (содержат горячую воду или пар и воду) - представляют собой, так называемые геотермальные резервуары, которые образуются в результате наполнения подземных полостей водой атмосферных осадков, нагреваемой близко лежащей магмой;

-сухие горячие скальные породы, разогретые магмой (на глубине 2 км и более) - их запасы энергии наиболее велики;

-магма, представляющая собой нагретые до 1300°С расплавленные горные породы. Тепло возникает там, прежде всего, за счет распада природных радиоактивных элементов, таких как уран и калий.

Однако тепло Земли очень "рассеянно", и в большинстве районов мира человеком может использоваться с выгодой только очень небольшая часть такой энергии. Из них пригодные для использования геотермальные ресурсы составляют всего 1% общей теплоемкости верхней 10-километровой толщи земной коры, или 137 трлн. т. у. т (тонн условного топлива). Но и это количество геотермальной энергии может обеспечить нужды человечества на долгое время. Области повышенной сейсмической активности, вокруг краев континентальных плит являются наилучшими местами для строительства геотермальных электростанций, потому что кора в таких зонах намного тоньше. Именно поэтому наиболее перспективные геотермальные ресурсы находятся в зонах вулканической активности. К сожалению, человечество еще не научилось использовать энергию вулканов в мирных целях. А вот рассматриваемые далее скрытые, на первый взгляд незаметные, проявления энергии земных недр, уже давно эффективно используются людьми для получения тепловой, а в течение последних почти 100 лет и электрической энергии.

При непосредственном использовании, высокотемпературное тепло, нагревающее геотермальную воду до значений температур, не превышающими 100°С, как правило, используется для нужд теплоснабжения, горячего водоснабжения и других подобных целей. Практика прямого использования тепла широко распространена на границах тектонических плит, например в Исландии, Японии, и Дальнем Востоке. Примером такого источника тепла служат гейзеры. Водопровод в таких случаях монтируется непосредственно в глубинные скважины. При значениях температур геотермальных вод превышающих 140 - 150°С, когда вода вблизи от поверхности земли нагревается до температуры кипения, в результате чего в виде водяного пара вырывается на поверхность, экономически, наиболее выгодно использовать геотермальную энергию для выработки электричества (Смотри таблицу 1).

Таблица 1 - Соотношения значений температур и способов применения геотермальной энергии

Значение температуры воды,°СОбласть применения Более 150Выработка электроэнергииМенее 100Системы отопления зданийОколо 60Системы горячего водоснабженияМенее 60Теплоснабжение теплиц, геотермальные холодильные установки и т.п.

Группа экспертов из Всемирной ассоциации по вопросам геотермальной энергии, которая произвела оценку запасов низко - и высокотемпературной геотермальной энергии для каждого континента, получила следующие данные по потенциалу различных типов геотермальных источников нашей планеты (Смотри таблицу 2).

Таблица 2 - Геотермальный потенциал низко- и высокотемпературной энергии

Наименование континента Тип геотермального источника: Высокотемпературный, используемый для производства электроэнергии, ТДж/годНизкотемпературный, используемый в виде теплоты, ТДж/год (нижняя граница) традиционные технологиитрадиционные и бинарные технологииЕвропа18303700>370Азия29705900>320Африка12202400>240Северная Америка13302700>120Латинская Америка28005600>240Океания10502100>110Мировой потенциал1120022400>1400

Как видно из этой таблицы, потенциал геотермальных источников энергии просто таки колоссален. Однако используется он крайне незначительно: установленная мощность ГеоТЭС во всем мире на начало 1990-х годов составляла всего лишь около 5000, а на начало 2000-х годов - около 6000 МВт, существенно уступая по этому показателю большинству электростанций, работающих на других возобновляемых источниках энергии. Да и выработка электроэнергии на ГеоТЭС в этот период времени была незначительной. Об этом свидетельствуют следующие данные. В структуре мирового производства электроэнергии, возобновляемые источники энергии в 2000 году обеспечили 19 % общемирового производства электроэнергии. При этом, несмотря на значительные темпы развития, геотермальная, солнечная и ветровая энергия составляла в 2000 году менее 3 % от общего объема использования энергии, получаемой от возобновляемых источников.

Однако в настоящее время геотермальная электроэнергетика развивается ускоренными темпами, не в последнюю очередь из-за галопирующего увеличения стоимости нефти и газа. Этому развитию во многом способствуют принятые во многих странах мира правительственные программы, поддерживающие это направление развития геотермальной энергетики.

Отметим, что геотермальные ресурсы разведаны в 80 странах мира и в 58 из них активно используются. Крупнейшим производителем геотермальной электроэнергии являются США, где геотермальная электроэнергетика, как один из альтернативных источников энергии, имеет особую правительственную поддержку. В США в 2005 году на ГеоТЭС было выработано около 16 млрд. кВтч электроэнергии в таких основных промышленных зонах, как зона Больших гейзеров, расположенная в 100 км к северу от Сан-Франциско (1360 МВт установленной мощности), северная часть Соленого моря в центральной Калифорнии (570 МВт установленной мощности), Невада (235 МВт установленной мощности) и др. Геотермальная электроэнергетика бурно развивается также в ряде других стран, в том числе: на Филиппинах, где на ГеоТЭС на начало 2003 года было установлено 1930 МВт электрической мощности, что позволило обеспечить около 27% потребностей страны в электроэнергии; в Италии, где в 2003 году действовали геотермальные энергоустановки общей мощностью в 790 МВт; в Исландии, где действуют пять теплофикационных ГеоТЭС общей электрической мощностью 420 МВт, вырабатывающие 26,5 % всей электроэнергии в стране; в Кении, где в 2005 году действовали три ГеоТЭС общей электрической мощностью в 160 МВт и были разработаны планы по доведению этих мощностей до 576 МВт. Перечень государств лидеров, где ускоренными темпами развивается геотермальная электроэнергетика, смотри в таблице 3.

Таблица 3 - Топ-15 стран, использующих геотермальную энергию (данные на 2007 г.)

СтранаМощность (МВт) США2687Филиппины1969,7Индонезия 992Мексика953Италия810,5Япония535,2Новая Зеландия471,6Исландия 421,2Сальвадор204,2Коста-Рика162,5Кения128,8Никарагуа87,4Россия79Папуа-Новая Гвинея56Гватемала53

К сожалению, Россия не входит даже в первую десятку производителей электрической и тепловой энергии из геотермальных источников, в то время как запасы геотермальной энергии в России по оценкам в 10-15 раз превышают запасы органического топлива в стране.

Характеризуя развитие мировой геотермальной электроэнергетики как неотъемлемой составной части возобновляемой энергетики на более отдаленную перспективу, отметим следующее. Согласно прогнозным расчетам в 2030 году ожидается некоторое (до 12,5 % по сравнению с 13,8 % в 2000 году) снижение доли возобновляемых источников энергии в общемировом объеме производства энергии. При этом энергия солнца, ветра и геотермальных вод будет развиваться ускоренными темпами, ежегодно увеличиваясь в среднем на 4,1 %, однако вследствие "низкого" старта их доля в структуре возобновляемых источников и в 2030 году будет оставаться наименьшей.

Опыт, накопленный различными странами (в том числе и Россией), относится в основном к использованию природного пара и термальных вод, которые остаются пока наиболее реальной базой геотермальной энергетики. Однако ее крупномасштабное развитие в будущем возможно лишь при освоении петрогеотермальных ресурсов, т.е. тепловой энергии горячих горных пород, температура которых на глубине 3 - 5 км обычно превышает 100°С.

Все же, применяя геотермальную энергию, следует в полной мере учитывать ее достоинства и недостатки. Главными достоинствами геотермальной энергии являются;

-возможность ее использования в виде геотермальной воды или смеси воды и пара (в зависимости от их температуры) для нужд горячего водо- и теплоснабжения, а так же для выработки электроэнергии либо одновременно для того и другого;

-практически полная безопасность для окружающей среды. Количество СО2, выделяемого при производстве 1 кВт электроэнергии из высокотемпературных геотермальных источников, составляет от 13 до 380 г (например, для угля он равен 1042 г на 1 кВт∙ч);

-экономическая эффективность в несколько раз превосходит традиционные виды получения электроэнергии, а также и другие виды НВИЭ;

-ее практическая неиссякаемость;

-полная независимость в работе от условий окружающей среды, времени суток и года;

-коэффициент использования превышает 90%;

Тем самым, использование геотермальной энергии (наряду с использованием других экологически чистых возобновляемых источников энергии) может внести существенный вклад в решение следующих неотложных проблем;

-обеспечение устойчивого тепло - и электроснабжения населения в тех районах нашей планеты, где централизованное энергоснабжение отсутствует или обходится слишком дорого (например, в России на Камчатке, в районах Крайнего Севера и т.п.);

-обеспечение гарантированного минимума энергоснабжения населения в зонах неустойчивого централизованного энергоснабжения из-за дефицита электроэнергии в энергосистемах, предотвращение ущерба от аварийных и ограничительных отключений и т.п.;

-снижение вредных выбросов от энергоустановок в отдельных регионах со сложной экологической обстановкой;

Указанные преимущества приводят к тому, что геотермальная энергетика, несмотря на свою молодость (у нее всего 100-летняя история) развивается сейчас во всем мире;

Основными недостатками геотермальной энергии являются:

необходимость обратной закачки отработанной воды в подземный водоносный горизонт;

-высокая минерализация термальных вод большинства месторождений, наличие в воде токсичных соединений и металлов, что в большинстве случаев исключает возможность сброса этих вод в расположенные на поверхности природные водные системы;

-ограниченные районы источников такой энергии;

-низкий температурный потенциал теплоносителя;

-ограниченность промышленного опыта эксплуатации станций;

Также развитие геотермальной энергетики останавливает высокая цена установок, а также более низкий выход энергии в сравнении с газовыми или нефтяными скважинами. С другой стороны - их можно использовать гораздо дольше, чем месторождения традиционных источников.

Отмеченные выше недостатки геотермальной энергии приводят к тому, что для практического использования теплоты геотермальных вод необходимы значительные капитальные затраты на бурение скважин, обратную закачку отработанной геотермальной воды, а также на создание коррозийно-стойкого теплотехнического оборудования.

Однако в связи с внедрением новых, менее затратных, технологий бурения скважин, применением эффективных способов очистки воды от токсичных соединений и металлов капитальные затраты на отбор тепла от геотермальных вод непрерывно снижаются. К тому же, следует иметь ввиду, что геотермальная энергетика в последнее время существенно продвинулась в своем развитии. Так, последние разработки показали возможность выработки электроэнергии при температуре пароводяной смеси ниже 80 ºС, что позволяет гораздо шире применять ГеоТЭС для выработки электроэнергии. В связи с этим ожидается, что в странах со значительным геотермальным потенциалом и первую очередь в США мощность ГеоТЭС в самое ближайшее время удвоится.

геотермальная энергия россия электростанция

2. Геотермальные электростанции

Виды ГеоТЭС по принципу работы

Геотермальная электростанция (ГеоТЭС) - вид электростанций, которые вырабатывают электрическую энергию из тепловой энергии подземных источников.

Схема работы геотермальной электростанции достаточно проста. Вода, через специально пробуренные отверстия, закачивается глубоко под землю, в те слои земной коры, которые естественным образом довольно сильно нагреты. Просачиваясь в трещины и полости горячего гранита, вода нагревается, вплоть до образования водяного пара, и по другой, параллельной скважине поднимается обратно. После этого горячая вода поступает непосредственно на электростанцию, в теплообменник, и её энергия преобразуется в электрическую. Это происходит посредством турбины и генератора, как и во многих других типах электростанций. В другом варианте геотермальной электростанции, используются природные гидротермальные ресурсы, т.е. вода, нагретая до высокой температуры в результате естественных природных процессов. Однако область использования подобных ресурсов значительно ограничена наличием особых геологических районов. В этом случае в теплообменник поступает уже нагретая вода, выкачанная из земных недр. В другом случае - вода в результате высокого геологического давления, поднимается самостоятельно, через специально пробуренные отверстия. Это, так скажем, общий принцип работы геотермальной электростанции, который подходит для всех их типов. По своему техническому устройству, геотермальные электростанции подразделяются на несколько видов:

-геотермальные электростанции на парогидротермах - это электростанции, в которых используется уже нагретая природой вода;

-двухконтурная геотермальная электростанция на водяном паре. В таких электростанциях имеется специальный двухконтурный парогенератор, позволяющий генерировать "добавочный" пар. Иными словами на "горячей" стороне парогенератора используется геотермальный пар, а на "холодной" его стороне генерируется вторичный пар, полученный из подведенной воды;

-двухконтурная геотермальная электростанция на низкокипящих рабочих веществах. Область применения таких электростанций - использование очень горячих (до 200 градусов) термальных вод, а также использование дополнительно воды на месторождениях парогидротерм, о которых было сказано выше;

В настоящее время существует три схемы производства электроэнергии с использованием геотермальных ресурсов:

-прямая с использованием сухого пара

-непрямая с использованием водяного пара

Тип преобразования зависит от состояния среды (пар или вода) и ее температуры.

Первыми были освоены электростанции на сухом пару с прямым типом производства электроэнергии. Самая первая геотермальная электростанция в мире работала именно по такому принципу. Эксплуатация этой станции началась в итальянском городке Лардерелло (недалеко от Флоренции) ещё в 1911 году. Семью годами ранее, 4 июля 1904 года с помощью геотермального пара здесь был приведен в действие генератор, который смог зажечь четыре электрические лампочки, после чего и было принято решение о строительстве электростанции. Что примечательно, станция в Лардерелло функционирует и по сей день. Для производства электроэнергии на таких ГеоТЭС, пар, поступающий по трубам из скважины, пропускается непосредственно через турбину, которая вращает генератор, вырабатывающий электроэнергию. (Смотри рисунок 1)

Рисунок 1 - Принцип работы геотермальной электростанции, работающей на сухом пару

Дальнейшим развитием ГеоТЭС стали электростанции с непрямым типом производства электроэнергии, на сегодняшний день являющиеся самыми распространенными. Они используют горячие подземные воды (температурой до 182 °С) которые закачиваются при высоком давлении в установки на поверхности. Гидротермальный раствор нагнетается в испаритель для снижения давления, из-за этого часть раствора очень быстро выпаривается. Полученный пар приводит в действие турбину. Если в резервуаре остается жидкость, то ее можно выпарить в следующем испарителе для получения еще большей мощности. (Смотри рисунок 2)

На данный момент, все большее распространение получают ГеоТЭС со смешанным циклом работы. Появившаяся несколько лет назад новая, разработанная австралийской компанией Geodynamics Ltd., революционная технология строительства ГеоТЭС - технология Hot-Dry-Rock, существенно повышает эффективность преобразования энергии геотермальных вод в электроэнергию. Суть этой технологии заключается в следующем. До самого последнего времени в термоэнергетике незыблемым считался главный принцип работы всех геотермальных станций, заключающийся в использовании естественного выхода пара. Австралийцы отступили от этого принципа и решили сами создать подходящий "гейзер". Для этого они отыскали в пустыне на юго-востоке Австралии точку, где тектоника и изолированность скальных пород создают аномалию, которая круглогодично поддерживает в округе очень высокую температуру. Поэтому если на такую глубину через скважину закачать воду, то она, повсеместно проникая в трещины горячего гранита, будет их расширять, одновременно нагреваясь, а затем по другой пробуренной скважине будет подниматься на поверхность. После этого нагретую воду можно будет без особого труда собирать в теплообменнике, а полученную от нее энергию использовать для испарения другой жидкости с более низкой температурой кипения, пар которой и приведет в действие паровые турбины. Вода, отдавшая геотермальное тепло, вновь будет направлена через скважину на глубину, и цикл, таким образом, повторится. (Смотри рисунок 3)

Рисунок 2 - Принцип работы геотермальной электростанции с непрямым типом производства энергии

Рисунок 3 - Принцип работы геотермальной электростанции с бинарным циклом

3. Развитие геотермальной энергетики в России

ч. Россия, к сожалению, не входит даже в первую десятку производителей электрической и тепловой энергии из геотермальных источников, в то время как запасы геотермальной энергии по оценкам в 10-15 раз превышают запасы органического топлива. Практически на всей территории страны есть запасы геотермального тепла с температурами в диапазоне от 30 до 200 °С. На сегодняшний день уже пробурено около 4000 скважин на глубину до 5000 м, позволяющих перейти к широкомасштабному внедрению современных технологий для локального теплоснабжения на всей территории страны. Потенциальные тепловые ресурсы верхних слоев Земли, до глубины 100-200 м оцениваются в 400-1000 млн. тонн условного топлива в год.

По данным института вулканологии Дальневосточного Отделения Российской Академии наук, только геотермальные ресурсы Камчатки оцениваются в 5000 МВт, что позволит обеспечивать регион электроэнергией и теплом в течение 100 лет. Поэтому особое внимание уделяется развитию геотермальной энергетики в данном регионе. Уже разработана и реализовывается программа создания геотермального энергоснабжения Камчатки, в результате которой ежегодно будет сэкономлено около 900 т. у. т.

Согласно прогнозам Research Techart, доля геотермальной энергетики в России к 2020 году может достигнуть 0,3% в совокупном энергобалансе. Установленная мощность составит 750 МВт и посредством термальных ресурсов земли может вырабатываться до 5 млрд. кВт∙ч электроэнергии. Наибольший прирост установленных мощностей ожидается в период с 2015 по 2020. Прогнозная динамика ввода геотермальных мощностей представлена на рисунке 4. Развитию отрасли будет также способствовать увеличение объема инвестиций. Так, до 2020 года в строительство новых геотермальных объектов будет вложено около 60 млрд. рублей. (Рисунок 5)

Мощность, МВт

Временной промежуток

Рисунок 4 - Прогнозируемая динамика ввода новых мощностей, МВт. Млрд. руб.

Временной промежуток

Рисунок 5 - Оценка капиталовложений в создание объектов геотермальной энергетики, млрд. руб.

Вместе с тем, рассматривая текущее и перспективное производство электроэнергии на основе возобновляемых источников, следует отметить, что геотермальная энергия к началу века от общего количества вырабатываемой электроэнергии не превосходила 0,15 % и лишь к 2010 г. хотя и увеличится на треть, но не превысит 0,2 % с общей выработкой на уровне 7 ТВт∙ч. В соответствии с Энергетической стратегией России до 2020 года планируется рост теплопотребления в стране не менее чем в 1,3 раза, причем доля децентрализованного теплоснабжения будет возрастать с 28,6% в 2000 г. до 33% в 2020 г. Однако до недавнего времени, масштаб использования геотермальной энергии в стране был весьма скромным. Особенно актуальным представляется использование геотермальной энергии в отдаленных регионах России, в частности, на Камчатке. На Камчатке, на Паратунском месторождении в 1967 году была создана опытно-промышленная геотермальная электростанция мощностью около 500 кВт - это был первый опыт получения электроэнергии с помощью геотермального тепла в России. Тогда же началась первая в России промышленная выработка электроэнергии на Паужетской геотермальной электростанции. Последняя до сих пор работает и дает самую дешевую на Камчатке электроэнергию.

Когда в условиях рыночной экономики резко начала расти цена на мазут, выяснилось, что самой дорогой электроэнергией в России стала камчатская, целиком и полностью зависящая от так называемого северного завоза. Были времена, когда 1 кВт∙ч стоил почти 30 центов. Для сравнения: мировая цена - 6 центов, в России - 1,5-3. В 1994 г. организовался ОАО "Геотерм" и АО "Геотерм-М", и с этого момента началась реализация проекта. Развитие геотермальной энергетики на Камчатке в настоящее время идет не столь активно, как этого требует экономика и экологическая обстановка в регионе. Причин несколько: отсутствие в стратегии развития энергетики региона акцента на геотермию, значительные долги АО "Камчатскэнерго" за многолетние поставки мазута.

По данным АО "Геотерм - М", геотермальные ресурсы России распределены следующим образом: все три российские геотермальные электростанции расположены на территории Камчатки, суммарный энергопотенциал пароводяных терм которой оценивается в 1 ГВт рабочей электрической мощности, однако реализован только в размере 76,5 МВт установленной мощности (2004 год) и около 420 млн. кВт/час годовой выработки (2004 год). Электростанция Мутновская, самая большая в регионе, находится в 120 километрах от города Петропавловск-Камчатский на высоте 1 км над уровнем моря, у подножья одноименного вулкана. Мутновское месторождение состоит из Верхне-Мутоновской ГеоТЭС, установленной мощностью 12 МВт (2007) и выработкой 52,9 млн. кВт·ч/год (2007) (81,4 в 2004) и Мутоновской ГеоТЭС мощностью 50 МВт (2007) и выработкой 360,7 млн. кВт·ч/год (2007) (276,8 в 2004 г.)

По данным Международного энергетического агентства (IEA) цена строительства этих установок составила 150 миллионов долларов. Для финансирования проекта РАО ЕЭС было получено от Европейского Банка реконструкции и развития кредит в 100 миллионов долларов. По прогнозам специалистов, производственные мощности Мутновской ГеоТЭС в ближайшие годы вырастут до 250 МВт.

Паужетское месторождение находится возле вулканов Кошелева и Камбального - Паужетская ГеоТЭС мощностью 14,5 МВт·э (2004) и выработкой 59,5 млн. кВт∙ч. На Паужетской ГеоТЭС мощностью 11 МВт используется на паровых турбинах только отсепарированный геотермальный пар из пароводяной смеси, получаемой из геотермальных скважин. Большое количество геотермальной воды (около 80% общего расхода ПВС) с температурой 120°C сбрасывается в нерестовую реку Озерная, что приводит не только к потерям теплового потенциала геотермального теплоносителя, но и существенно ухудшает экологическое состояние реки. Предлагается использовать тепло сбросной геотермальной воды для выработки электроэнергии путем создания двухконтурной энергоустановки на низкокипящем рабочем теле. Расход сбросной воды на действующей Паужетской ГеоТЭС достаточен для энергоустановки мощностью 2 МВт. Температура сбросной воды снижается до 55°C, тем самым значительно уменьшается тепловое загрязнение реки.

В Ставропольском крае на Каясулинском месторождении начато и приостановлено строительство дорогостоящей опытной Ставропольской ГеоТЭС мощностью 3 МВт.

Существует проект Океанской ГеоТЭС мощностью 34,5 МВт годовой выработкой 107 млн. кВт·ч. В настоящее время электроснабжение г. Курильска и поселков Рейдово и Горячие Ключи осуществляется с помощью ДЭС, а теплоснабжение - с помощью угольных котельных. Дизтопливо ввозится в короткий период навигации - на о. Итуруп нет своего топлива. В последние годы из-за финансовых трудностей завоз топлива на остров резко сократился; электроэнергия подается населению по 2-3 часа в сутки. Вместе с тем на острове имеются богатейшие по масштабам острова запасы высокопотенциальных геотермальных источников энергии, которые к тому же в основном уже разведаны. На гидрогеологическую разведку и НИОКР по созданию ГеоТЭС израсходовано около 75-80 млрд. руб. в текущих ценах. Стоимость электроэнергии на ГеоТЭС в два с лишним раза ниже, чем на ДЭС. Привозное топливо будет вытеснено из расчета 2,5-3 тыс. т. у. т. /год/МВт. Улучшится экологическая обстановка на острове.

На Кунашире действует ГеоТЭС 2,6 МВт, а планируют несколько ГеоТЭС суммарной мощностью 12-17 МВт. В Калининградской области планируется осуществить пилотный проект геотермального тепло - и электроснабжения города Светлый на базе бинарной ГеоТЭС мощностью 4 МВт. В настоящее время геотермальные источники энергии обеспечивают на Камчатке до 25 процентов от общего энергопотребления, что значительно помогает ослабить зависимость полуострова от дорогостоящего привозного мазута. Крупнейшие месторождения парогидротерм Камчатки расположены в горных местностях с неблагоприятным климатом. Среднегодовая температура отрицательная, глубина снега до 10 м. Это существенно затрудняет и удорожает строительство и эксплуатацию геотермальных электростанций.

Сотрудниками ЭНИН, АО "Наука" и НУЦ МЭИ предложен проект ГеоТЭС позволяющий, как минимум, в полтора раза увеличить их полезную мощность и повысить надежность.

Как известно, поступающая из геотермальных скважин пароводяная смесь имеет сложный химический состав. Содержание солей в водяной фазе до 2 г/л, в том числе много кремнекислоты, в паре значительное количество неконденсирующихся газов, включая сероводород. Это ограничивает возможность глубокого использования теплового потенциала геотермального теплоносителя в традиционном цикле ГеоТЭС с конденсационными паровыми турбинами, не позволяя получать дополнительный пар расширением воды и глубокий вакуум в конденсаторе. Сильный ветер, мороз, обильные снегопады в сочетании с высокой влажностью создают угрозу образования льда в обычно применяемых на ГеоТЭС влажных градирнях, что может привести к остановке энергоблоков и даже к разрушению градирен.

На предлагаемых ГеоТЭС комбинированного цикла эти проблемы в значительной степени решаются. Если применить паровые турбины с близким к атмосферному противодавлением и направить отработанный пар в конденсатор, являющийся одновременно парогенератором нижнего контура станции с турбинами на низкокипящем незамерзающем рабочем теле, то суммарную выработку электроэнергии можно значительно повысить за счет снижения температуры отвода тепла из цикла. Конденсация пара низкокипящего рабочего тела осуществляется в воздушном конденсаторе, поэтому полезная мощность станции зимой значительно возрастает вместе с ростом потребности в электроэнергии. Кроме того, нет затрат пара на эжекторы для удаления неконденсирующихся газов, можно также частично использовать тепло геотермальной воды для перегрева пара низкокипящего рабочего тела. Облегчается зимняя эксплуатация станции, так как нет открытого контакта воды с воздухом, а температура воды в теплообменных аппаратах и трубопроводах не опускается ниже 60°С.

Комбинированные ГеоТЭС уже работают за рубежом, но в районах с тропическим климатом, где их эффективность не может проявиться в полную силу из-за высоких температур воздуха. Для северных районов вышеуказанные преимущества таких станций обеспечивают большие перспективы их применения. В проходящем сейчас международном тендере на строительство первой очереди Мутновской ГеоТЭС станция комбинированного цикла рассматривается в качестве одного из возможных вариантов.

К сожалению, в России отсутствует отечественное серийное оборудование энергоустановок на низкокипящем рабочем теле, поэтому реальными поставщиками могут быть лишь иностранные фирмы. Это приводит к росту необходимых капвложений в строительство и эксплуатационных затрат. Чтобы ускорить создание комбинированных ГеоТЭС на Камчатке и стимулировать работу отечественных производителей оборудования, АО "Геотерм" предполагает в ближайшее время построить четвертый блок Верхне-Мутновской ГеоТЭС по комбинированной тепловой схеме.

Развитие геотермальной энергетики в России поможет во многом разрешить проблему электрификации малообжитых территорий и повышения надёжности электроснабжения той части потребителей, для которых централизованное энергообеспечение экономически неприемлемо. Без использования возобновляемых источников нельзя удовлетворительно решить энергоснабжение районов Крайнего Севера; районов, не связанных сетями общего пользования; повысить до цивилизованного уровня надёжность и качество электроснабжения регионов, дефицитных по электрической энергии и органическим ресурсам; улучшить экологическую обстановку по стране, обеспечения аварийного энергоснабжения, специальных объектов, а также объектов сферы образования, культуры, услуг.

Заключение

Тепло Земли очень "рассеянно", и в большинстве районов мира человеком может использоваться с выгодой только очень небольшая часть такой энергии. Из них пригодные для использования геотермальные ресурсы составляют всего 1% общей теплоемкости верхней 10-километровой толщи земной коры, или 137 трлн. тонн условного топлива. Но и это количество геотермальной энергии может обеспечить нужды человечества на долгое время. Области повышенной сейсмической активности, вокруг краев континентальных плит являются наилучшими местами для строительства геотермальных электростанций, потому что кора в таких зонах намного тоньше. Именно поэтому наиболее перспективные геотермальные ресурсы находятся в зонах вулканической активности.

В структуре мирового производства электроэнергии, возобновляемые источники энергии в 2000 году обеспечили 19 % общемирового производства электроэнергии. При этом, несмотря на значительные темпы развития, геотермальная, солнечная и ветровая энергия составляла в 2000 году менее 3 % от общего объема использования энергии, получаемой от возобновляемых источников. Однако в настоящее время геотермальная электроэнергетика развивается ускоренными темпами, не в последнюю очередь из-за галопирующего увеличения стоимости нефти и газа. Этому развитию во многом способствуют принятые во многих странах мира правительственные программы, поддерживающие это направление развития геотермальной энергетики.

Отметим, что геотермальные ресурсы разведаны в 80 странах мира и в 58 из них активно используются. Крупнейшим производителем геотермальной электроэнергии являются США, где геотермальная электроэнергетика, как один из альтернативных источников энергии, имеет особую правительственную поддержку. Опыт, накопленный различными странами (в том числе и Россией), относится в основном к использованию природного пара и термальных вод, которые остаются пока наиболее реальной базой геотермальной энергетики. Однако ее крупномасштабное развитие в будущем возможно лишь при освоении петрогеотермальных ресурсов, т.е. тепловой энергии горячих горных пород, температура которых на глубине 3 - 5 км обычно превышает 100°С.

Геотермальная энергетика, и геотермальные электростанции в том числе, является одним из самых перспективных видов получения альтернативных источников энергии. Современная востребованность геотермальной энергии как одного из видов возобновляемой энергии обусловлена, прежде всего, истощением запасов органического топлива и зависимостью большинства развитых стран от его импорта (в основном импорта нефти и газа), а также с существенным отрицательным влиянием традиционной энергетики на окружающую среду.

Сегодня ГеоТЭС в мире производят около 54613 ГВт∙ч энергии в год. Суммарная мощность существующих геотермальных систем теплоснабжения оценивается в 75900 ГВтч. Россия, к сожалению, не входит даже в первую десятку производителей электрической и тепловой энергии из геотермальных источников, в то время как запасы геотермальной энергии по оценкам в 10-15 раз превышают запасы органического топлива.

Сейчас, в связи с внедрением новых, менее затратных, технологий бурения скважин, применением эффективных способов очистки воды от токсичных соединений и металлов капитальные затраты на отбор тепла от геотермальных вод непрерывно снижаются.

К тому же, следует иметь ввиду, что геотермальная энергетика в последнее время существенно продвинулась в своем развитии. Так, последние разработки показали возможность выработки электроэнергии при температуре пароводяной смеси ниже 80 ºС, что позволяет гораздо шире применять ГеоТЭС для выработки электроэнергии.

В связи с этим ожидается, что в странах со значительным геотермальным потенциалом и первую очередь в США мощность ГеоТЭС в самое ближайшее время удвоится.

Библиографический список

1. Попов, М.С. Геотермальная энергетика в России [Текст] / М.С. Попов - М.: "Энергоатомиздат", 1988. - 294 с.

Максимов, И.Г. Альтернативные источники энергии [Текст] / И.Г. Максимов - М.: "Эко-Тренд", 2005. - 387 с.

Феофанов, Ю.А. Геотермальные электростанции [Текст] / Ю.А. Феофанов - М.: "Эко-Тренд", 2005. - 217 с.

Алхасов, А.Б. Геотермальная энергетика: проблемы, ресурсы, технологии [Текст] / А.Б. Алхасов - М.: "Физматлит", 2008. - 376 с.

Геотермальная энергия - это энергия тепла земных недр. Согласно подсчетам, энергетический потенциал тепла на глубине 10 тысяч метров в 50 тысяч раз превышает энергию мировых запасов природного газа и нефти. Источники геотермальной энергии практически неисчерпаемы. Правда, распространены они не повсеместно, хотя и обнаружены в более чем 60 странах мира.

Существует два основных способа использования геотермальной энергии: прямое использование тепла и производство электроэнергии. Прямое использование тепла является наиболее простым и поэтому наиболее распространенным способом. Практика прямого использования тепла широко распространенна в высоких широтах на границах тектонических плит, например в Исландии и Японии. Водопровод в таких случаях монтируется непосредственно в глубинные скважины. Получаемая горячая вода применяется для подогрева дорог, сушки одежды и обогрева теплиц и жилых строений. Способ производства электричества из геотермальной энергии очень похож на способ прямого использования. Единственным отличием является необходимость в более высокой температуре (более 150°С).

В настоящее время существует три схемы производства электроэнергии на геотермальных электростанциях (ГеоТЭС): прямая с использованием сухого пара, непрямая с использованием водяного пара и смешанная схема производства (бинарный цикл). Тип преобразования зависит от состояния среды (пар или вода) и ее температуры.

Первыми были освоены электростанции на сухом пару. Для производства электроэнергии на них пар, поступающий из скважины, пропускается непосредственно через турбину, которая вращает генератор. Одна из самых крупных ныне действующих геотермальных электростанций в мире мощностью 1400 МВт, расположенная в районе Гейзеры в Северной Калифорнии (США), также использует сухой пар.

На месторождениях пароводяной смеси в вулканических районах (в России это Камчатка и Курильские острова) простейшим способом получения электроэнергии является использование паровых турбин с противодавлением.

Схема ГеоТЭС с противодавленческой турбиной показана на рис 2.29. Поступающая из геотермального резервуара по подъемной скважине 1 пароводяная смесь направляется в сепаратор2 , где происходит разделение на жидкую (вода с растворенными солями и газами) и газовую (водяной пар и неконденсирующиеся газы) фазы. Затем парогазовая смесь поступает на противодавленческую паровую турбину с генератором3 , отработанный пар с неконденсирующимися газами сбрасывается в атмосферу, а отсепарированная вода после возможного использования для теплоснабжения возвращается в геотермальный резервуар по нагнетательной скважине4 . При низком солесодержании возможен сброс отработанной воды в открытые водоемы.

Энергоблоки с противодавленческими турбинами обычно применяются при очень высоком содержании в газовой фазе неконденсирующихся газов (12...15 % по массе), когда их удаление из конденсатора становится энергетически и экономически невыгодным.

Однако, несмотря на простоту схем с противодавленческими турбинами, в большинстве случаев ГеоТЭС на месторождениях пароводяной смеси используют более эффективную схему с конденсационными турбинами.

Схема энергоблока с конденсационной турбиной показана на рис. 2.30. Геотермальная пароводяная смесь или влажный пар с неконденсирующимися газами (НКГ) из подъемной скважины 1 подается в сепаратор2 , откуда пар поступает на вход конденсационной турбины3 , а минерализованная вода направляется на реинжекционную скважину8 для возврата в пласт. Отработанный пар подается в смешивающий конденсатор4 . Поскольку в большинстве случаев на геотермальных месторождениях нет источников охлаждающей воды (реки или пруда), применяется оборотная система отвода сбросного тепла, включающая циркуляционный насос6 , башенную градирню5 и конденсатный насос7 . Неконденсирующиеся газы, обычно содержащие большое количество сероводорода, удаляются из конденсатора эжекторами и подаются на верхний срез градирни для рассеивания в атмосфере вместе с паровым факелом.

Максимальная мощность конденсационного энергоблока составляет 100 МВт (ГеоТЭС Гейзеры, США), но обычно мощности энергоблоков находятся в интервале 12…50 МВт.

Если на месторождениях пароводяной смеси температура отсепарированной воды достаточно высока (выше 100°С), то можно путем расширения (сбросом давления в расширителе) получить дополнительный пар, который направляется на промежуточный вход турбины. Это позволяет получить дополнительную работу и, тем самым, повысить КПД энергоустановки.

Схема энергоблока с конденсационной турбиной и расширением геотермального флюида показана на рис. 2.31. Ее отличие от предыдущей схемы состоит в наличии расширителя9 , в котором получается дополнительный пар, подаваемый на промежуточный вход турбины. Теоретически таких каскадов может быть несколько.

На практике, однако, возможность применения таких схем ограничивается отложением солей в элементах оборудования в результате повышения концентрации солей выше предельной растворимости. Поэтому применение схем с расширителями возможно лишь при отсутствии массивных отложений солей или при использовании регулярной очистки оборудования.

Во избежание отложений солей, возникающих при упаривании геотермальных рассолов в схемах с расширителями, применяется схема с использованием низкокипящих рабочих тел. Схема такого энергоблока показана на рис. 2.32.

Геотермальный рассол из подъемной скважины 1 поступает в парогенератор, который обычно выполняется в виде двух аппаратов ― собственно парогенератора2 и пароперегревателя (экономайзера)3 . После охлаждения до предельной температуры, определяемой условием отсутствия отложения солей, рассол возвращается обратно в пласт по нагнетательной скважине7 . В связи с высокой стоимостью скважин, для увеличения расхода геотермального рассола иногда применяются погружные насосы, размещаемые на глубине до 200 м в подъемной скважине, а для обратной закачки практически всегда используется нагнетательный насос перед нагнетательной скважиной7 . Расход электроэнергии на привод этих насосов иногда достигает 20% от выработки электроэнергии. В качестве рабочих тел таких ГеоТЭС используются хладагенты (углеводороды: пропан, бутан, фреоны, в последнее время рассматривается возможность применения водоаммиачной смеси).

Для более полного использования теплового потенциала геотермальной пароводяной смеси целесообразно использовать комбинированную тепловую схему (рис. 2.33). В такой схеме пароводяная смесь из подъемной скважины1 подается в сепаратор2 , откуда пар направляется в противодавленческую паровую турбину3 . После выхода из турбины пар поступает в конденсатор4 , являющийся парогенератором низкокипящего рабочего тела. Отсепарированный горячий геотермальный рассол подается в пароперегреватель низкокипящего рабочего тела5 , после чего возвращается в пласт по нагнетательной скважине10 . . Перегретый пар низкокипящего РТ подается на вход бинарной турбины 6, после расширения в которой поступает в рекуператор7 , где охлаждается и подается в воздушный конденсатор8 . Сконденсированное низкокипящее рабочее тело питательным насосом9 подается на предварительный подогрев в рекуператор7 и затем в парогенератор4 . Такая схема позволяет использовать тепло отсепарированного рассола для перегрева низкокипящего рабочего тела, что приводит к увеличению КПД ГеоТЭС. Особенно эффективно применение такой схемы при низких температурах воздуха, так как благодаря низким температурам замерзания низкокипящих рабочих тел (ниже –50°С) можно осуществлять конденсацию при отрицательных температурах.

Для условий Мутновского месторождения пароводяной смеси на Камчатке (среднегодовая температура воздуха –5 °С) выработка электроэнергии на комбинированной ГеоТЭС увеличивается на 20 % по сравнению с традиционным конденсационным циклом.

Достоинства геотермальных электростанций заключаются в том, что они не требуют поставок топлива из внешних источников и не сжигают кислород. Их работа не сопровождается вредными или токсичными выбросами (за некоторыми исключениями). Эксплуатация геотермальной электростанции не требует дополнительных расходов, кроме расходов на профилактическое техобслуживание или ремонт. Геотермальные электростанции не портят пейзаж и не занимают значительные площади.

Недостатки геотермальных электростанций связаны, прежде всего, с тем, что их сооружение возможно только в сейсмоактивных районах. В процессе эксплуатации скважин снижаются давление и температура в них, и значительно оседает поверхность вокруг скважины. Иногда действующая геотермальная электростанция может остановиться в результате естественных изменений в земной коре или по причине чрезмерной закачки воды в породу через нагнетательную скважину.

Через эксплуатационную скважину могут выделяться горючие или токсичные газы или минералы, содержащиеся в породах земной коры. Избавиться от них достаточно сложно.

Серьезным недостатком ГеоТЭС является необходимость обратной закачки отработанной воды в подземный водоносный горизонт. В ысокая минерализация термальных вод большинства месторождений и наличие в воде токсичных соединений и металлов в большинстве случаев исключает возможность сброса этих вод в расположенные на поверхности природные водные системы.

В 2010г. общая мощность ГеоТЭС, действующих в 24 странах, составляла 10 715 МВт. На сегодняшний день мировыми лидерами в геотермальной электроэнергетике являются США (3086 МВт), Индонезия (1197 МВт), Филиппины (1904 МВт), Мексика (958 МВт), Италия (843 МВт), Новая Зеландия (628 МВт), Исландия (575 МВт) и Япония (536 МВт)

В России использование геотермальной энергии возможно на Камчатке, Чукотке, Курилах, Сахалине, в Прибайкайле, Западно-Сибирском регионе, а также на Северном Кавказе. По установленной мощности ГеоТЭС Россия сильно отстает от ведущих стран (14 место). Установленная мощность ГеоТЭС России составляет всего чуть более 80 МВт. В настоящее время действуют Верхне-Мутновская ГеоТЭС(12 МВт), Мутновская ГеоТЭС(50 МВт) иПаужетская ГеоТЭС(17 МВт) на Камчатке,Океанская ГеоТЭС(2,5 МВт) и Менделеевская ГеоТЭС(5 МВт) на Курилах. Ведется реконструкция Мутновской и Паужетской ГеоТЭС с целью увеличения их мощностей до 100 и 18 МВт соответственно. Строится ГеоТЭС на о. Парамушир (Курилы) мощностью 34,5 МВт. Планируется строительство ГеоТЭС мощностью 10 МВт в Чечне с перспективой увеличения мощности до 30 МВт.